cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 104 results. Next

A009566 Expansion of e.g.f. sinh(log(1+log(1+x))).

Original entry on oeis.org

0, 1, -2, 8, -47, 359, -3349, 36756, -462972, 6574704, -103861896, 1805930928, -34267701720, 704555489832, -15601914340440, 370195510608192, -9369769657984128, 251979258929744448, -7175127496412091456
Offset: 0

Views

Author

Keywords

Programs

  • Mathematica
    CoefficientList[Series[(Log[1 + x]*(2 + Log[1 + x]))/(2*(1 + Log[1 + x]) ), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 23 2015 *)
    With[{nmax = 50}, CoefficientList[Series[Sinh[Log[1 + Log[1 + x]]], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jan 21 2018 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(serlaplace(sinh(log(1+log(1+x)))))) \\ G. C. Greubel, Jan 21 2018

Formula

a(n) ~ n! * (-1)^(n+1) * exp(n) / (2 * (exp(1)-1)^(n+1)). - Vaclav Kotesovec, Jan 23 2015
a(n) = (-1)^(n-1)*((n-1)! + A007840(n))/2 for n > 0. - Velin Yanev, May 17 2024

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997

A218817 Number of rooted factorizations of n-permutations into ordered cycles.

Original entry on oeis.org

0, 1, 6, 42, 352, 3470, 39468, 509544, 7367232, 117981792, 2073609120, 39690563616, 821945839680, 18312215714832, 436766423241120, 11104557643877760, 299811706265604096, 8566939116183215232, 258298187497129564416, 8195130059917806607104, 272936837532680503188480
Offset: 0

Views

Author

Geoffrey Critzer, Nov 06 2012

Keywords

Comments

Linearly arrange the cycles over all permutations of {1,2,...,n} (these are called alignments in [Flajolet and Sedgewick]) then select a root.

Programs

  • Maple
    b:= proc(n) b(n):= n!*`if`(n=0, 1, add(b(k)/(k!*(n-k)), k=0..n-1)) end:
    a:= n-> n*b(n):
    seq(a(n), n=0..20); # Alois P. Heinz, Nov 06 2012
  • Mathematica
    nn=20;a=Log[1/(1-x)];Range[0,nn]!CoefficientList[Series[x D[1/(1-a),x] ,{x,0,nn}],x]

Formula

E.g.f.: x/( (1-x)*(1 - log(1/(1-x)))^2 ).
a(n) = n*A007840(n).

A303000 a(n) = permanent of the n X n matrix with entries a(i, i) = i^2 and a(i, j) = 1 elsewhere.

Original entry on oeis.org

1, 5, 52, 918, 24630, 934938, 47736048, 3157054776, 262661665176, 26857133054424, 3311299323349920, 484541686800059760, 83031688670103506160, 16472545369548670950480, 3746065113561656467249920, 968109978211279792380074880, 282158259444905145777416119680
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 17 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Permanent[DiagonalMatrix[Table[i^2-1, {i, 1, n}]] + 1], {n, 1, 20}]
  • PARI
    {a(n) = matpermanent(matrix(n, n, i, j, if(i==j, i^2, 1)))}
    for(n=1, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Dec 20 2018

A303001 a(n) = permanent of the n X n matrix with entries a(i, i) = i*(i+1)/2 and a(i, j) = 1 elsewhere.

Original entry on oeis.org

1, 4, 30, 356, 6106, 142760, 4363848, 168986136, 8087082144, 468807362736, 32379640476000, 2627735592279600, 247610398718738640, 26815386224063189760, 3307855985755600598400, 461149884030679844958720, 72151124506962747825006720, 12590610689213961622942752000
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 17 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Permanent[DiagonalMatrix[Table[i*(i+1)/2-1, {i, 1, n}]] + 1], {n, 1, 20}]
  • PARI
    {a(n) = matpermanent(matrix(n, n, i, j, if(i==j, i*(i+1)/2, 1)))}
    for(n=1, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Dec 20 2018

A318617 a(n) is the number of rooted labeled forests on n nodes that avoid the patterns 213, 231, and 312.

Original entry on oeis.org

1, 1, 3, 13, 73, 503, 4107, 38773, 415589, 4986715, 66238503, 965102769, 15306905817, 262567910999, 4844199561787, 95660129298709, 2013392566243565, 44997370759528091, 1064283567185090791, 26560710262784693097, 697529916604465424553
Offset: 0

Views

Author

Kassie Archer, Aug 30 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n-1, k-1] (r-1)! a[n-k] a[k-r], {k, 1, n}, {r, 1, k}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Sep 13 2018 *)
  • PARI
    seq(n)={my(v=vector(n+1)); v[1]=1; for(n=1, n, v[n+1]=sum(k=1, n, sum(r=1, k, binomial(n-1,k-1)*(r-1)!*v[n-k+1]*v[k-r+1]))); v} \\ Andrew Howroyd, Aug 30 2018

Formula

a(n) = Sum_{k=1..n} Sum_{r=1..k} binomial(n-1,k-1)*(r-1)!*a(n-k)*a(k-r) for n>0, a(0)=1.

A318618 a(n) is the number of rooted forests on n nodes that avoid the patterns 321, 2143, and 3142.

Original entry on oeis.org

1, 1, 3, 15, 102, 870, 8910, 106470, 1454040, 22339800, 381364200, 7161323400, 146701724400, 3255661609200, 77808668137200, 1992415575150000, 54420258228336000, 1579320261543024000, 48529229906613456000, 1574046971727454224000, 53741325186841612320000
Offset: 0

Views

Author

Kassie Archer, Aug 30 2018

Keywords

Comments

a(n) is the number of rooted labeled forests on n nodes so that along any path from the root to a vertex, there is at most one descent.

Crossrefs

Programs

  • Mathematica
    a[n_] := n! + Sum[n! 2^-j Binomial[n-k-1, j-1] Binomial[k, j], {k, 1, n}, {j, 1, Min[k, n-k]}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Sep 13 2018 *)
  • PARI
    a(n) = {n! + sum(k=1, n, sum(j=1, min(k, n-k), n!/(2^j)*binomial(n-k-1,j-1)*binomial(k,j)))} \\ Andrew Howroyd, Aug 31 2018

Formula

a(n) = n! + Sum_{k=1..n} Sum_{j=1..min(k, n-k)} (n!/2^j)*binomial(n-k-1, j-1)*binomial(k, j).
From Peter J. Taylor, Jul 03 2025: (Start)
E.g.f.: -2*(x-1)/(x^2-4*x+2).
a(n) = n! * Sum_{j=0..n/2} binomial(n, 2*j)/2^j
a(n) = 2*n*a(n-1) - n*(n-1)/2*a(n-2).
a(n) ~ (1+sqrt(1/2))^n*n!/2. (End)

A330499 Expansion of e.g.f. Sum_{k>=1} log(1 + log(1/(1 - x))^k).

Original entry on oeis.org

0, 1, 2, 13, 71, 558, 5344, 60926, 766898, 10759096, 168848256, 2947203048, 56368708824, 1165246323408, 25802649445728, 609940593443952, 15377212949988624, 412827548455415040, 11764577341464710016, 354392697960438122880, 11237993013428254071936
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 16 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Sum[Log[1+Log[1/(1-x)]^k], {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) ~ n! * c / (1 - exp(-1))^n, where c = 0.478656...

A331339 E.g.f.: 1 / (1 + log(1 - x - x^2)).

Original entry on oeis.org

1, 1, 5, 32, 292, 3294, 44918, 714468, 13002456, 266275200, 6060498672, 151750887936, 4145522908272, 122690391196944, 3910569680464848, 133549150323123744, 4864927063250290176, 188297220693251438208, 7716800776602560577408
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 14 2020

Keywords

Crossrefs

Programs

  • Maple
    A331339 := proc(n)
        option remember;
        if n = 0 then
            1;
        else
            add(binomial(n,k)*(k-1)!*A000204(k)*procname(n-k),k=1..n) ;
        end if;
    end proc:
    seq(A331339(n),n=0..42) ; # R. J. Mathar, Aug 20 2021
  • Mathematica
    nmax = 18; CoefficientList[Series[1/(1 + Log[1 - x - x^2]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] (k - 1)! LucasL[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * (k - 1)! * Lucas(k) * a(n-k).
a(n) ~ n! * 2^(n+1) * exp(n/2) / (sqrt(5*exp(1) - 4) * (sqrt(5*exp(1) - 4) - exp(1/2))^(n+1)). - Vaclav Kotesovec, Jan 26 2020

A331340 a(n) = n! * [x^n] 1 / (1 + Sum_{k=1..n} log(1 - k*x)).

Original entry on oeis.org

1, 1, 23, 1872, 371524, 147316050, 102823452318, 115685840003328, 196669439127051840, 480847207762313690400, 1626231663646322798946000, 7372321556702072183715972096, 43653032698484678876818157764224, 330351436922959495109028135649934640
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 14 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[1/(1 + Sum[Log[1 - k x], {k, 1, n}]), {x, 0, n}], {n, 0, 13}]
    Table[n! SeriesCoefficient[1/(1 + Log[Sum[StirlingS1[n + 1, n - k + 1] x^k, {k, 0, n}]]), {x, 0, n}], {n, 0, 13}]

Formula

a(n) = n! * [x^n] 1 / (1 + log(Sum_{k=0..n} Stirling1(n+1,n-k+1) * x^k)).
a(n) ~ sqrt(Pi) * n^(3*n + 1/2) / (2^(n - 1/2) * exp(n - 5/3)). - Vaclav Kotesovec, Jan 28 2020

A343685 a(0) = 1; a(n) = 2 * n * a(n-1) + Sum_{k=0..n-1} binomial(n,k) * (n-k-1)! * a(k).

Original entry on oeis.org

1, 3, 19, 182, 2328, 37234, 714674, 16004064, 409587144, 11792756640, 377261048592, 13275818803488, 509646721402032, 21195285059025648, 949279217570464944, 45552467588773815744, 2331624264279599225088, 126804353256754734370176, 7301857349340031590836352, 443826900013575494233057536
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 26 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = 2 n a[n - 1] + Sum[Binomial[n, k] (n - k - 1)! a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 19}]
    nmax = 19; CoefficientList[Series[1/(1 - 2 x + Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: 1 / (1 - 2*x + log(1 - x)).
a(n) ~ n! / ((2/c + 1 - c) * (1 - c/2)^n), where c = LambertW(2*exp(1)) = 1.3748225281836233816178373171119... - Vaclav Kotesovec, Apr 26 2021
Previous Showing 61-70 of 104 results. Next