A009566
Expansion of e.g.f. sinh(log(1+log(1+x))).
Original entry on oeis.org
0, 1, -2, 8, -47, 359, -3349, 36756, -462972, 6574704, -103861896, 1805930928, -34267701720, 704555489832, -15601914340440, 370195510608192, -9369769657984128, 251979258929744448, -7175127496412091456
Offset: 0
-
CoefficientList[Series[(Log[1 + x]*(2 + Log[1 + x]))/(2*(1 + Log[1 + x]) ), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 23 2015 *)
With[{nmax = 50}, CoefficientList[Series[Sinh[Log[1 + Log[1 + x]]], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jan 21 2018 *)
-
my(x='x+O('x^30)); concat([0], Vec(serlaplace(sinh(log(1+log(1+x)))))) \\ G. C. Greubel, Jan 21 2018
A218817
Number of rooted factorizations of n-permutations into ordered cycles.
Original entry on oeis.org
0, 1, 6, 42, 352, 3470, 39468, 509544, 7367232, 117981792, 2073609120, 39690563616, 821945839680, 18312215714832, 436766423241120, 11104557643877760, 299811706265604096, 8566939116183215232, 258298187497129564416, 8195130059917806607104, 272936837532680503188480
Offset: 0
-
b:= proc(n) b(n):= n!*`if`(n=0, 1, add(b(k)/(k!*(n-k)), k=0..n-1)) end:
a:= n-> n*b(n):
seq(a(n), n=0..20); # Alois P. Heinz, Nov 06 2012
-
nn=20;a=Log[1/(1-x)];Range[0,nn]!CoefficientList[Series[x D[1/(1-a),x] ,{x,0,nn}],x]
A303000
a(n) = permanent of the n X n matrix with entries a(i, i) = i^2 and a(i, j) = 1 elsewhere.
Original entry on oeis.org
1, 5, 52, 918, 24630, 934938, 47736048, 3157054776, 262661665176, 26857133054424, 3311299323349920, 484541686800059760, 83031688670103506160, 16472545369548670950480, 3746065113561656467249920, 968109978211279792380074880, 282158259444905145777416119680
Offset: 1
-
Table[Permanent[DiagonalMatrix[Table[i^2-1, {i, 1, n}]] + 1], {n, 1, 20}]
-
{a(n) = matpermanent(matrix(n, n, i, j, if(i==j, i^2, 1)))}
for(n=1, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Dec 20 2018
A303001
a(n) = permanent of the n X n matrix with entries a(i, i) = i*(i+1)/2 and a(i, j) = 1 elsewhere.
Original entry on oeis.org
1, 4, 30, 356, 6106, 142760, 4363848, 168986136, 8087082144, 468807362736, 32379640476000, 2627735592279600, 247610398718738640, 26815386224063189760, 3307855985755600598400, 461149884030679844958720, 72151124506962747825006720, 12590610689213961622942752000
Offset: 1
-
Table[Permanent[DiagonalMatrix[Table[i*(i+1)/2-1, {i, 1, n}]] + 1], {n, 1, 20}]
-
{a(n) = matpermanent(matrix(n, n, i, j, if(i==j, i*(i+1)/2, 1)))}
for(n=1, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Dec 20 2018
A318617
a(n) is the number of rooted labeled forests on n nodes that avoid the patterns 213, 231, and 312.
Original entry on oeis.org
1, 1, 3, 13, 73, 503, 4107, 38773, 415589, 4986715, 66238503, 965102769, 15306905817, 262567910999, 4844199561787, 95660129298709, 2013392566243565, 44997370759528091, 1064283567185090791, 26560710262784693097, 697529916604465424553
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n-1, k-1] (r-1)! a[n-k] a[k-r], {k, 1, n}, {r, 1, k}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Sep 13 2018 *)
-
seq(n)={my(v=vector(n+1)); v[1]=1; for(n=1, n, v[n+1]=sum(k=1, n, sum(r=1, k, binomial(n-1,k-1)*(r-1)!*v[n-k+1]*v[k-r+1]))); v} \\ Andrew Howroyd, Aug 30 2018
A318618
a(n) is the number of rooted forests on n nodes that avoid the patterns 321, 2143, and 3142.
Original entry on oeis.org
1, 1, 3, 15, 102, 870, 8910, 106470, 1454040, 22339800, 381364200, 7161323400, 146701724400, 3255661609200, 77808668137200, 1992415575150000, 54420258228336000, 1579320261543024000, 48529229906613456000, 1574046971727454224000, 53741325186841612320000
Offset: 0
-
a[n_] := n! + Sum[n! 2^-j Binomial[n-k-1, j-1] Binomial[k, j], {k, 1, n}, {j, 1, Min[k, n-k]}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Sep 13 2018 *)
-
a(n) = {n! + sum(k=1, n, sum(j=1, min(k, n-k), n!/(2^j)*binomial(n-k-1,j-1)*binomial(k,j)))} \\ Andrew Howroyd, Aug 31 2018
A330499
Expansion of e.g.f. Sum_{k>=1} log(1 + log(1/(1 - x))^k).
Original entry on oeis.org
0, 1, 2, 13, 71, 558, 5344, 60926, 766898, 10759096, 168848256, 2947203048, 56368708824, 1165246323408, 25802649445728, 609940593443952, 15377212949988624, 412827548455415040, 11764577341464710016, 354392697960438122880, 11237993013428254071936
Offset: 0
-
nmax = 20; CoefficientList[Series[Sum[Log[1+Log[1/(1-x)]^k], {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
A331339
E.g.f.: 1 / (1 + log(1 - x - x^2)).
Original entry on oeis.org
1, 1, 5, 32, 292, 3294, 44918, 714468, 13002456, 266275200, 6060498672, 151750887936, 4145522908272, 122690391196944, 3910569680464848, 133549150323123744, 4864927063250290176, 188297220693251438208, 7716800776602560577408
Offset: 0
-
A331339 := proc(n)
option remember;
if n = 0 then
1;
else
add(binomial(n,k)*(k-1)!*A000204(k)*procname(n-k),k=1..n) ;
end if;
end proc:
seq(A331339(n),n=0..42) ; # R. J. Mathar, Aug 20 2021
-
nmax = 18; CoefficientList[Series[1/(1 + Log[1 - x - x^2]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] (k - 1)! LucasL[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
A331340
a(n) = n! * [x^n] 1 / (1 + Sum_{k=1..n} log(1 - k*x)).
Original entry on oeis.org
1, 1, 23, 1872, 371524, 147316050, 102823452318, 115685840003328, 196669439127051840, 480847207762313690400, 1626231663646322798946000, 7372321556702072183715972096, 43653032698484678876818157764224, 330351436922959495109028135649934640
Offset: 0
-
Table[n! SeriesCoefficient[1/(1 + Sum[Log[1 - k x], {k, 1, n}]), {x, 0, n}], {n, 0, 13}]
Table[n! SeriesCoefficient[1/(1 + Log[Sum[StirlingS1[n + 1, n - k + 1] x^k, {k, 0, n}]]), {x, 0, n}], {n, 0, 13}]
A343685
a(0) = 1; a(n) = 2 * n * a(n-1) + Sum_{k=0..n-1} binomial(n,k) * (n-k-1)! * a(k).
Original entry on oeis.org
1, 3, 19, 182, 2328, 37234, 714674, 16004064, 409587144, 11792756640, 377261048592, 13275818803488, 509646721402032, 21195285059025648, 949279217570464944, 45552467588773815744, 2331624264279599225088, 126804353256754734370176, 7301857349340031590836352, 443826900013575494233057536
Offset: 0
-
a[0] = 1; a[n_] := a[n] = 2 n a[n - 1] + Sum[Binomial[n, k] (n - k - 1)! a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 19}]
nmax = 19; CoefficientList[Series[1/(1 - 2 x + Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
Comments