A317852 Number of plane trees with n nodes where the sequence of branches directly under any given node is aperiodic, meaning its cyclic permutations are all different.
1, 1, 1, 3, 8, 26, 76, 247, 783, 2565, 8447, 28256, 95168, 323720, 1108415, 3821144, 13246307, 46158480, 161574043, 567925140, 2003653016, 7092953340, 25186731980, 89690452750, 320221033370, 1146028762599, 4110596336036, 14774346783745, 53203889807764, 191934931634880
Offset: 1
Keywords
Examples
The a(5) = 8 locally aperiodic plane trees: ((((o)))), (((o)o)), ((o(o))), (((o))o), (o((o))), ((o)oo), (o(o)o), (oo(o)). The a(6) = 26 locally aperiodic plane trees: (((((o))))) ((((o)o))) (((o)oo)) ((o)ooo) (((o(o)))) ((o(o)o)) (o(o)oo) ((((o))o)) ((oo(o))) (oo(o)o) ((o((o)))) (((o)o)o) (ooo(o)) ((((o)))o) ((o(o))o) (o(((o)))) (o((o)o)) (((o))(o)) (o(o(o))) ((o)((o))) (((o))oo) (o((o))o) (oo((o))) ((o)(o)o) ((o)o(o)) (o(o)(o))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
Mathematica
aperQ[q_]:=Array[RotateRight[q,#]&,Length[q],1,UnsameQ]; aperplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[aperplane/@c],aperQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]]; Table[Length[aperplane[n]],{n,10}]
-
PARI
Tfm(p, n)={sum(d=1, n, moebius(d)*(subst(1/(1+O(x*x^(n\d))-p), x, x^d)-1))} seq(n)={my(p=O(1)); for(i=1, n, p=1+Tfm(x*p, i)); Vec(p)} \\ Andrew Howroyd, Feb 08 2020
Extensions
a(16)-a(17) from Robert Price, Sep 15 2018
Terms a(18) and beyond from Andrew Howroyd, Feb 08 2020
Comments