cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 37 results. Next

A364333 G.f. satisfies A(x) = (1 + x*A(x)^2) * (1 + x*A(x)^6).

Original entry on oeis.org

1, 2, 17, 216, 3224, 52640, 910452, 16392140, 303996224, 5767278431, 111401778266, 2183535060362, 43319505976084, 868220464851417, 17552981176788200, 357544690982030744, 7330803752675100908, 151172599088871911072, 3133367418601958989295, 65242183918761533467216
Offset: 0

Views

Author

Seiichi Manyama, Jul 18 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(2*n+4*k+1, k)*binomial(2*n+4*k+1, n-k)/(2*n+4*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(2*n+4*k+1,k) * binomial(2*n+4*k+1,n-k) / (2*n+4*k+1).

A366325 G.f. satisfies A(x) = (1 + x) * (1 + x/A(x)).

Original entry on oeis.org

1, 2, -1, 3, -10, 36, -137, 543, -2219, 9285, -39587, 171369, -751236, 3328218, -14878455, 67030785, -304036170, 1387247580, -6363044315, 29323149825, -135700543190, 630375241380, -2938391049395, 13739779184085, -64430797069375, 302934667061301, -1427763630578197
Offset: 0

Views

Author

Seiichi Manyama, Oct 07 2023

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n = 1 then 2 elif n = 2 then -1 else (-3*(2*n - 3)*a(n-1) - 5*(n - 3)*a(n-2))/n fi; end:
    seq(a(n), n = 1..30); # Peter Bala, Sep 10 2024
  • PARI
    a(n) = (-1)^(n-1)*sum(k=0, n, binomial(2*k-1, k)*binomial(n-2, n-k)/(2*k-1));

Formula

G.f.: A(x) = -2*x*(1+x) / (1+x-sqrt((1+x)*(1+5*x))).
a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(2*k-1,k) * binomial(n-2,n-k)/(2*k-1).
a(n) ~ -(-1)^n * 5^(n - 1/2) / (2 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Oct 07 2023
From Peter Bala, Sep 10 2024: (Start)
a(n) = 1/(1 - n) * Sum_{k = 0..n} binomial(-n+k, k)*binomial(-n+k+1, n-k) for n not equal to 1. Cf. A007863.
a(n) = Sum_{k = 0..n-2} binomial(-n+k+1, k)*binomial(-n+k+1, n-k)/(-n+k+1) for n >= 2.
P-recursive: n*a(n) = - 3*(2*n - 3)*a(n-1) - 5*(n - 3)*a(n-2) with a(1) = 2 and a(2) = -1. (End)

A375434 Expansion of g.f. A(x) satisfying A(x) = (1 + x*A(x)) * (1 + 3*x*A(x)^2).

Original entry on oeis.org

1, 4, 31, 301, 3274, 38158, 465919, 5883040, 76189177, 1006440238, 13508178448, 183689450959, 2525336086630, 35041483528522, 490125130328455, 6902993856515389, 97814486474787898, 1393470813699724726, 19946461692566594413, 286742046721454817358, 4138001844031453456120
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2024

Keywords

Comments

In general, if G(x) = (1 + p*x*G(x)) * (1 + q*x*G(x)^2) for fixed p and q, then
(C.1) G(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * p^(n-k) * q^k * G(x)^k ).
(C.2) G(x) = (1/x) * Series_Reversion( x/(1 + p*x) - q*x^2 ).
(C.3) x = (sqrt((p - q*y)^2 + 4*p*q*y^2) - (p + q*y))/(2*p*q*y^2), where y = G(x).

Examples

			G.f. A(x) = 1 + 4*x + 31*x^2 + 301*x^3 + 3274*x^4 + 38158*x^5 + 465919*x^6 + 5883040*x^7 + 76189177*x^8 + 1006440238*x^9 + 13508178448*x^10 + ...
where A(x) = (1 + x*A(x)) * (1 + 3*x*A(x)^2).
RELATED SERIES.
Let B(x) = A(x/B(x)) and B(x*A(x)) = A(x), then
B(x) = 1 + 4*x + 15*x^2 + 57*x^3 + 216*x^4 + 819*x^5 + 3105*x^6 + 11772*x^7 + ... + A125145(n)*x^n + ...
where B(x) = (1 + x)/(1 - 3*x - 3*x^2).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1+x); for(i=1, n, A=(1 + x*A)*(1 + 3*x*(A+x*O(x^n))^2)); polcoef(A, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = polcoef( (1/x)*serreverse( x*(1-3*x-3*x^2)/(1+x +x*O(x^n))), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2 * 3^j * A^j)*x^m/m))); polcoef(A, n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

G.f. A(x) = Sum{n>=0} a(n)*x^n satisfies:
(1) A(x) = (1 + x*A(x)) * (1 + 3*x*A(x)^2).
(2) A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * 3^k * A(x)^k ).
(3) A(x) = (1/x) * Series_Reversion( x*(1 - 3*x - 3*x^2)/(1 + x) ).
(4) A(x) = Sum_{n>=0} A125145(n) * x^n * A(x)^n, where g.f. of A125145 = (1 + x)/(1 - 3*x - 3*x^2).
(5) x = (sqrt(21*A(x)^2 - 6*A(x) + 1) - (1 + 3*A(x)))/(6*A(x)^2).
a(n) = Sum_{k=0..n} 3^k * binomial(n+k+1,k) * binomial(n+k+1,n-k) / (n+k+1). - Seiichi Manyama, Sep 08 2024
a(n) ~ ((36 + (48266 - 714*sqrt(17))^(1/3) + (48266 + 714*sqrt(17))^(1/3))/7)^n / (sqrt(6*Pi*((20517 - 4861*sqrt(17))^(1/3) + (20517 + 4861*sqrt(17))^(1/3) - 42)) * n^(3/2)). - Vaclav Kotesovec, Sep 14 2024

A379021 Expansion of (1/x) * Series_Reversion( x * ((1 - x - x^2)/(1 + x))^2 ).

Original entry on oeis.org

1, 4, 26, 206, 1813, 17032, 167287, 1697044, 17643322, 186997570, 2012973499, 21948003052, 241883091289, 2690117648372, 30153678822007, 340305271736134, 3863616751855069, 44097785533620550, 505692279260755753, 5823592506326814874, 67320958983831426221
Offset: 0

Views

Author

Seiichi Manyama, Dec 14 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2*sum(k=0, n, binomial(2*n+k+2, k)*binomial(2*n+k+2, n-k)/(2*n+k+2));

Formula

G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{k>=1} A379022(k) * x^k/k ).
(2) A(x) = ( (1 + x*A(x)) * (1 + x*A(x)^(3/2)) )^2.
(3) A(x) = B(x)^2 where B(x) is the g.f. of A215654.
a(n) = (1/(n+1)) * [x^n] ( (1 + x)/(1 - x - x^2) )^(2*(n+1)).
a(n) = 2 * Sum_{k=0..n} binomial(2*n+k+2,k) * binomial(2*n+k+2,n-k)/(2*n+k+2) = (1/(n+1)) * Sum_{k=0..n} binomial(2*n+k+1,k) * binomial(2*n+k+2,n-k).

A379024 Expansion of (1/x) * Series_Reversion( x * ((1 - x - x^2)/(1 + x))^4 ).

Original entry on oeis.org

1, 8, 100, 1500, 24846, 438064, 8062518, 153117320, 2978260865, 59031215508, 1187987779084, 24210092837648, 498606095949315, 10361291534825800, 216982960825089730, 4574651332139656108, 97018731642209493810, 2068350691029593934000, 44301394943232879298360
Offset: 0

Views

Author

Seiichi Manyama, Dec 14 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 4*sum(k=0, n, binomial(4*n+k+4, k)*binomial(4*n+k+4, n-k)/(4*n+k+4));

Formula

G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{k>=1} A379026(k) * x^k/k ).
(2) A(x) = ( (1 + x*A(x)) * (1 + x*A(x)^(5/4)) )^4.
(3) A(x) = B(x)^4 where B(x) is the g.f. of A239108.
a(n) = (1/(n+1)) * [x^n] ( (1 + x)/(1 - x - x^2) )^(4*(n+1)).
a(n) = 4 * Sum_{k=0..n} binomial(4*n+k+4,k) * binomial(4*n+k+4,n-k)/(4*n+k+4) = (1/(n+1)) * Sum_{k=0..n} binomial(4*n+k+3,k) * binomial(4*n+k+4,n-k).

A379327 G.f. A(x) satisfies A(x) = sqrt( (1 + 2*x*A(x)^2) * (1 + 2*x*A(x)) ).

Original entry on oeis.org

1, 2, 6, 22, 88, 372, 1634, 7382, 34078, 160034, 762078, 3671178, 17858476, 87599696, 432804190, 2151867226, 10758455224, 54053627604, 272780539742, 1382047628514, 7027307040920, 35848334763884, 183417043984246, 941007480667474, 4839875674661214, 24950493967407850
Offset: 0

Views

Author

Seiichi Manyama, Dec 21 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2^n*sum(k=0, n, binomial(n/2+k/2+1/2, k)*binomial(n/2+k/2+1/2, n-k)/(n+k+1));

Formula

a(n) = 2^n * Sum_{k=0..n} binomial(n/2+k/2+1/2,k) * binomial(n/2+k/2+1/2,n-k)/(n+k+1).

A011272 Hybrid binary rooted trees with n nodes whose root is labeled by "a".

Original entry on oeis.org

0, 1, 3, 13, 64, 339, 1885, 10851, 64109, 386510, 2368354, 14706331, 92337618, 585239903, 3739309053, 24059542845, 155756019048, 1013801283133, 6630587014935, 43553555324502
Offset: 0

Views

Author

Jean Pallo (pallo(AT)u-bourgogne.fr)

Keywords

Formula

a(n) = A007863(n) - A011270(n).

A234939 Coefficients of Hilbert series for suboperad of bicolored noncrossing configurations generated by a triangle with colored base and at least one more colored edge and a triangle with one colored non-base edge.

Original entry on oeis.org

1, 2, 8, 38, 200, 1124, 6608, 40142, 249992, 1587548, 10241264, 66926204, 442120016, 2947660616, 19808372384, 134030802782, 912385334792, 6244056445868, 42935538999728, 296493196682036, 2055313327353200, 14297177397185912, 99769106353379168, 698228176760193068
Offset: 1

Views

Author

N. J. A. Sloane, Jan 04 2014

Keywords

Crossrefs

Formula

a(n) = 2 * A007564(n-1) for n > 1 [from Chapoton & Giraudo, Proposition 3.8]. - Andrey Zabolotskiy, Feb 01 2025

Extensions

Terms a(9) onwards added and name clarified by Andrey Zabolotskiy, Feb 02 2025

A364340 G.f. satisfies A(x) = (1 + x*A(x)) * (1 + x*A(x)^6).

Original entry on oeis.org

1, 2, 15, 179, 2502, 38262, 619991, 10459410, 181771289, 3231782239, 58505593456, 1074766446526, 19984671314164, 375414901633692, 7113886504446443, 135820770971898805, 2610186429457347486, 50452256583633573513, 980187901557594671335, 19130197594133100828170, 374894511736219913097375
Offset: 0

Views

Author

Seiichi Manyama, Jul 19 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+5*k+1, k)*binomial(n+5*k+1, n-k)/(n+5*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+5*k+1,k) * binomial(n+5*k+1,n-k) / (n+5*k+1).

A369630 Expansion of (1/x) * Series_Reversion( x * (1/(1+x^3) - x) ).

Original entry on oeis.org

1, 1, 2, 6, 20, 70, 255, 960, 3707, 14598, 58395, 236626, 969275, 4007041, 16696822, 70053159, 295691622, 1254772103, 5349978803, 22907982780, 98466168572, 424713570017, 1837717336614, 7974744620620, 34698200181696, 151341512079231, 661590732178716
Offset: 0

Views

Author

Seiichi Manyama, Jan 28 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1/(1+x^3)-x))/x)
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n-3*k+1, k)*binomial(2*n-3*k,n-3*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n-3*k+1,k) * binomial(2*n-3*k,n-3*k).
Previous Showing 21-30 of 37 results. Next