A364333
G.f. satisfies A(x) = (1 + x*A(x)^2) * (1 + x*A(x)^6).
Original entry on oeis.org
1, 2, 17, 216, 3224, 52640, 910452, 16392140, 303996224, 5767278431, 111401778266, 2183535060362, 43319505976084, 868220464851417, 17552981176788200, 357544690982030744, 7330803752675100908, 151172599088871911072, 3133367418601958989295, 65242183918761533467216
Offset: 0
-
a(n) = sum(k=0, n, binomial(2*n+4*k+1, k)*binomial(2*n+4*k+1, n-k)/(2*n+4*k+1));
A366325
G.f. satisfies A(x) = (1 + x) * (1 + x/A(x)).
Original entry on oeis.org
1, 2, -1, 3, -10, 36, -137, 543, -2219, 9285, -39587, 171369, -751236, 3328218, -14878455, 67030785, -304036170, 1387247580, -6363044315, 29323149825, -135700543190, 630375241380, -2938391049395, 13739779184085, -64430797069375, 302934667061301, -1427763630578197
Offset: 0
-
a := proc(n) option remember; if n = 1 then 2 elif n = 2 then -1 else (-3*(2*n - 3)*a(n-1) - 5*(n - 3)*a(n-2))/n fi; end:
seq(a(n), n = 1..30); # Peter Bala, Sep 10 2024
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(2*k-1, k)*binomial(n-2, n-k)/(2*k-1));
A375434
Expansion of g.f. A(x) satisfying A(x) = (1 + x*A(x)) * (1 + 3*x*A(x)^2).
Original entry on oeis.org
1, 4, 31, 301, 3274, 38158, 465919, 5883040, 76189177, 1006440238, 13508178448, 183689450959, 2525336086630, 35041483528522, 490125130328455, 6902993856515389, 97814486474787898, 1393470813699724726, 19946461692566594413, 286742046721454817358, 4138001844031453456120
Offset: 0
G.f. A(x) = 1 + 4*x + 31*x^2 + 301*x^3 + 3274*x^4 + 38158*x^5 + 465919*x^6 + 5883040*x^7 + 76189177*x^8 + 1006440238*x^9 + 13508178448*x^10 + ...
where A(x) = (1 + x*A(x)) * (1 + 3*x*A(x)^2).
RELATED SERIES.
Let B(x) = A(x/B(x)) and B(x*A(x)) = A(x), then
B(x) = 1 + 4*x + 15*x^2 + 57*x^3 + 216*x^4 + 819*x^5 + 3105*x^6 + 11772*x^7 + ... + A125145(n)*x^n + ...
where B(x) = (1 + x)/(1 - 3*x - 3*x^2).
-
{a(n) = my(A=1+x); for(i=1, n, A=(1 + x*A)*(1 + 3*x*(A+x*O(x^n))^2)); polcoef(A, n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = polcoef( (1/x)*serreverse( x*(1-3*x-3*x^2)/(1+x +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = my(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2 * 3^j * A^j)*x^m/m))); polcoef(A, n)}
for(n=0, 20, print1(a(n), ", "))
A379021
Expansion of (1/x) * Series_Reversion( x * ((1 - x - x^2)/(1 + x))^2 ).
Original entry on oeis.org
1, 4, 26, 206, 1813, 17032, 167287, 1697044, 17643322, 186997570, 2012973499, 21948003052, 241883091289, 2690117648372, 30153678822007, 340305271736134, 3863616751855069, 44097785533620550, 505692279260755753, 5823592506326814874, 67320958983831426221
Offset: 0
-
a(n) = 2*sum(k=0, n, binomial(2*n+k+2, k)*binomial(2*n+k+2, n-k)/(2*n+k+2));
A379024
Expansion of (1/x) * Series_Reversion( x * ((1 - x - x^2)/(1 + x))^4 ).
Original entry on oeis.org
1, 8, 100, 1500, 24846, 438064, 8062518, 153117320, 2978260865, 59031215508, 1187987779084, 24210092837648, 498606095949315, 10361291534825800, 216982960825089730, 4574651332139656108, 97018731642209493810, 2068350691029593934000, 44301394943232879298360
Offset: 0
-
a(n) = 4*sum(k=0, n, binomial(4*n+k+4, k)*binomial(4*n+k+4, n-k)/(4*n+k+4));
A379327
G.f. A(x) satisfies A(x) = sqrt( (1 + 2*x*A(x)^2) * (1 + 2*x*A(x)) ).
Original entry on oeis.org
1, 2, 6, 22, 88, 372, 1634, 7382, 34078, 160034, 762078, 3671178, 17858476, 87599696, 432804190, 2151867226, 10758455224, 54053627604, 272780539742, 1382047628514, 7027307040920, 35848334763884, 183417043984246, 941007480667474, 4839875674661214, 24950493967407850
Offset: 0
-
a(n) = 2^n*sum(k=0, n, binomial(n/2+k/2+1/2, k)*binomial(n/2+k/2+1/2, n-k)/(n+k+1));
A011272
Hybrid binary rooted trees with n nodes whose root is labeled by "a".
Original entry on oeis.org
0, 1, 3, 13, 64, 339, 1885, 10851, 64109, 386510, 2368354, 14706331, 92337618, 585239903, 3739309053, 24059542845, 155756019048, 1013801283133, 6630587014935, 43553555324502
Offset: 0
Jean Pallo (pallo(AT)u-bourgogne.fr)
A234939
Coefficients of Hilbert series for suboperad of bicolored noncrossing configurations generated by a triangle with colored base and at least one more colored edge and a triangle with one colored non-base edge.
Original entry on oeis.org
1, 2, 8, 38, 200, 1124, 6608, 40142, 249992, 1587548, 10241264, 66926204, 442120016, 2947660616, 19808372384, 134030802782, 912385334792, 6244056445868, 42935538999728, 296493196682036, 2055313327353200, 14297177397185912, 99769106353379168, 698228176760193068
Offset: 1
A364340
G.f. satisfies A(x) = (1 + x*A(x)) * (1 + x*A(x)^6).
Original entry on oeis.org
1, 2, 15, 179, 2502, 38262, 619991, 10459410, 181771289, 3231782239, 58505593456, 1074766446526, 19984671314164, 375414901633692, 7113886504446443, 135820770971898805, 2610186429457347486, 50452256583633573513, 980187901557594671335, 19130197594133100828170, 374894511736219913097375
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+5*k+1, k)*binomial(n+5*k+1, n-k)/(n+5*k+1));
A369630
Expansion of (1/x) * Series_Reversion( x * (1/(1+x^3) - x) ).
Original entry on oeis.org
1, 1, 2, 6, 20, 70, 255, 960, 3707, 14598, 58395, 236626, 969275, 4007041, 16696822, 70053159, 295691622, 1254772103, 5349978803, 22907982780, 98466168572, 424713570017, 1837717336614, 7974744620620, 34698200181696, 151341512079231, 661590732178716
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1/(1+x^3)-x))/x)
-
a(n) = sum(k=0, n\3, binomial(2*n-3*k+1, k)*binomial(2*n-3*k,n-3*k))/(n+1);
Comments