cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 130 results. Next

A067792 a(n) is the least prime >= sigma(n).

Original entry on oeis.org

2, 3, 5, 7, 7, 13, 11, 17, 13, 19, 13, 29, 17, 29, 29, 31, 19, 41, 23, 43, 37, 37, 29, 61, 31, 43, 41, 59, 31, 73, 37, 67, 53, 59, 53, 97, 41, 61, 59, 97, 43, 97, 47, 89, 79, 73, 53, 127, 59, 97, 73, 101, 59, 127, 73, 127, 83, 97, 61, 173, 67, 97, 107, 127, 89, 149, 71, 127
Offset: 1

Views

Author

Benoit Cloitre, Feb 07 2002

Keywords

Crossrefs

Programs

Formula

From Antti Karttunen, Nov 17 2017: (Start)
a(n) = A007918(A000203(n)).
a(n) <= A074495(n).
(End)

Extensions

Definition clarified by Antti Karttunen, Nov 16 2017

A069549 Smallest composite k such that phi(k) > k*(1-1/n).

Original entry on oeis.org

4, 4, 9, 25, 25, 49, 49, 121, 121, 121, 121, 169, 169, 289, 289, 289, 289, 361, 361, 529, 529, 529, 529, 841, 841, 841, 841, 841, 841, 961, 961, 1369, 1369, 1369, 1369, 1369, 1369, 1681, 1681, 1681, 1681, 1849, 1849, 2209, 2209, 2209, 2209, 2809, 2809, 2809
Offset: 1

Views

Author

Benoit Cloitre, Apr 21 2002

Keywords

Comments

Or, least composite k such that k is coprime to the n-1 numbers k+1 ... k+n-1. E.g., a(4) = 25 because 25 is coprime to 26, 27 and 28. - Amarnath Murthy, Apr 20 2004

Crossrefs

Cf. A000010 (phi), A007918, A052349.

Programs

  • Mathematica
    a[n_] := NextPrime[n-1]^2; Array[a, 50] (* Amiram Eldar, May 08 2025 *)
  • PARI
    a(n) = nextprime(n)^2; \\ Amiram Eldar, May 08 2025

Formula

a(n) = nextprime(n)^2 = A007918(n)^2.

Extensions

Edited by David Wasserman, Apr 23 2007

A071328 Smallest prime q such that q - prime(n) >= n.

Original entry on oeis.org

3, 5, 11, 11, 17, 19, 29, 29, 37, 41, 43, 53, 59, 59, 67, 71, 79, 79, 89, 97, 97, 101, 107, 113, 127, 127, 131, 137, 139, 149, 163, 163, 173, 173, 191, 191, 197, 211, 211, 223, 223, 223, 239, 239, 251, 251, 263, 271, 277, 281, 293, 293, 307, 307
Offset: 1

Views

Author

Reinhard Zumkeller, May 19 2002

Keywords

Comments

a(n) = A007918(n + A000040(n));
a(n) = A071329(n) iff a(n) = A061068(k) for some k.

Examples

			a(10) = A007918(10 + A000040(10)) = A007918(10 + 29)= A007918(39) = 41;
a(6) = A007918(6 + A000040(6)) = A007918(6 + 13)= A007918(19) = 19 = A071329(6) = A061068(4).
		

Programs

  • Maple
    seq(nextprime(n + ithprime(n)-1),n=1..100); # Robert Israel, Jul 12 2019

A076873 Smallest prime not less than sum of first n primes.

Original entry on oeis.org

2, 5, 11, 17, 29, 41, 59, 79, 101, 131, 163, 197, 239, 281, 331, 383, 443, 503, 569, 641, 719, 797, 877, 967, 1061, 1163, 1277, 1373, 1481, 1597, 1721, 1861, 1993, 2129, 2281, 2437, 2591, 2749, 2917, 3089, 3271, 3449, 3643, 3833, 4049, 4229, 4441, 4663
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 27 2002

Keywords

Comments

a(n) = A007918(A007504(n)).

Examples

			n=5: 2+3+5+7+11 <= 29 = a(5).
		

Crossrefs

Programs

  • Maple
    P:= [seq(ithprime(i),i=1..100)]:
    S:= ListTools:-PartialSums(P):
    map(s -> nextprime(s-1),S); # Robert Israel, Jul 04 2019
  • Mathematica
    If[PrimeQ[#],#,NextPrime[#]]&/@Accumulate[Prime[Range[50]]]  (* Harvey P. Dale, Feb 04 2011 *)

A086757 Smallest prime p such that n is a palindrome in base-p representation.

Original entry on oeis.org

2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 13, 5, 3, 13, 2, 3, 2, 5, 23, 3, 2, 23, 3, 5, 29, 3, 2, 3, 31, 29, 2, 7, 2, 37, 37, 5, 41, 37, 41, 3, 5, 13, 47, 43, 2, 5, 53, 7, 53, 7, 2, 3, 59, 17, 59, 3, 5, 59, 61, 11, 67, 5, 2, 7, 2, 67, 5, 3, 71, 13, 7, 5, 2, 73, 79, 37, 79, 5, 83, 3, 83, 3, 5, 11, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 01 2003

Keywords

Comments

A016026(n) <= a(n) <= A007918(n).

Crossrefs

Cf. A006995 (a(n)=2).

Programs

  • PARI
    isok(p,n) = my(d=digits(n,p)); d == Vecrev(d);
    a(n) = my(p=2); while (!isok(p,n), p=nextprime(p+1)); p; \\ Michel Marcus, Jan 30 2024
  • Python
    from sympy import sieve
    from sympy.ntheory import is_palindromic
    def a086757(n): return next(p for p in sieve if is_palindromic(n, p)) # Dumitru Damian, Jan 29 2024
    

A090120 Numbers k such that nextprime(k^2) - prevprime(k^2) = 4.

Original entry on oeis.org

3, 4, 9, 10, 14, 15, 20, 21, 26, 33, 40, 110, 117, 124, 146, 206, 237, 250, 273, 303, 309, 326, 340, 350, 387, 429, 436, 440, 441, 447, 470, 513, 561, 573, 609, 634, 686, 704, 807, 897, 920, 1004, 1035, 1054, 1060, 1071, 1113, 1124, 1143, 1156, 1233, 1239
Offset: 1

Views

Author

Labos Elemer, Jan 09 2004

Keywords

Comments

Note that the gap = 4 is partitioned either as 2+2 or as 3+1; 1+3 never occurs since n^2-1 is composite if n>2.

Examples

			k = 3 is a term since, k^2 = 9 is surrounded by the closest primes: {7,[9],11}.
k = 10 is a term since k^2 = 100 is surrounded by {97,[100],101}.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[3,1500], NextPrime[#^2] == NextPrime[#^2, -1] + 4 &] (* Giovanni Resta, May 26 2018 *)
  • PARI
    isok(n) = nextprime(n^2) - precprime(n^2) == 4; \\ Michel Marcus, May 26 2018

Formula

Solutions to {x; A007918(x^2)-A007917(x^2) = 4}.

A091228 Smallest m >= n, such that m is irreducible when interpreted as GF(2)[X]-polynomial.

Original entry on oeis.org

2, 2, 2, 3, 7, 7, 7, 7, 11, 11, 11, 11, 13, 13, 19, 19, 19, 19, 19, 19, 25, 25, 25, 25, 25, 25, 31, 31, 31, 31, 31, 31, 37, 37, 37, 37, 37, 37, 41, 41, 41, 41, 47, 47, 47, 47, 47, 47, 55, 55, 55, 55, 55, 55, 55, 55, 59, 59, 59, 59, 61, 61, 67, 67, 67, 67, 67, 67, 73, 73, 73
Offset: 0

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Comments

Analogous to A007918.

Formula

a(n) = n + A091229(n).

A113459 Least number that begins an arithmetic progression of n numbers with the same prime signature.

Original entry on oeis.org

1, 2, 3, 5, 5, 7, 7, 11, 11, 11, 11, 13
Offset: 1

Views

Author

David Wasserman, Jan 08 2006

Keywords

Comments

Initial terms of arithmetic progressions described in A113460. - N. J. A. Sloane, Oct 18 2007
Conjecture: For n > 1, a(n) = A007918(n). - David Wasserman, Jan 08 2006
I disagree with that conjecture! Ignoring the initial terms, this will agree with A007918 up to some point and then (presumably) drop below A007918. The initial term in the arithmetic progression (of length n) must be >= n, but it is likely to be less than A007918(n) if n is large. - N. J. A. Sloane, Oct 18 2007

Crossrefs

Extensions

Edited by N. J. A. Sloane, Jul 01 2008 at the suggestion of R. J. Mathar.

A117093 Numbers k such that nextprime(3*k) > 3*nextprime(k) (if p is prime then nextprime(p) = p).

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 16, 17, 18, 19, 23, 28, 29, 30, 31, 37, 38, 39, 40, 41, 43, 47, 53, 58, 59, 61, 67, 71, 72, 73, 78, 79, 81, 82, 83, 88, 89, 95, 96, 97, 98, 99, 100, 101, 103, 106, 107, 108, 109, 113, 127, 130, 131, 137, 138, 139, 148, 149, 150, 151, 156, 157
Offset: 1

Views

Author

Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Apr 18 2006

Keywords

Comments

Includes all primes.

Examples

			13 is a term since nextprime(3*13) = 41 and 3*nextprime(13) = 3*13=39 and 41 > 39.
		

Crossrefs

Union of A000040 and A117100.
Cf. A007918 (nextprime).

Programs

  • Maple
    filter:= n -> nextprime(3*n) > 3*nextprime(n-1):
    select(filter, [$1..1000]); # Robert Israel, Jul 25 2025
  • Mathematica
    fp[k_]:=If[PrimeQ[k],k,NextPrime[k]];Select[Range[160],fp[3#]>3fp[#]&] (* James C. McMahon, Aug 23 2024 *)
  • PARI
    for(i=1,100,if(nextprime(3*i)>nextprime(3)*nextprime(i),print1(i,", ")))

Extensions

a(44)-a(59) from James C. McMahon, Aug 23 2024

A117094 Numbers k such that nextprime(5*k) > 5*nextprime(k) (if p is prime then nextprime(p) = p).

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 18, 19, 23, 28, 29, 31, 37, 40, 41, 43, 47, 53, 59, 60, 61, 67, 71, 72, 73, 78, 79, 82, 83, 89, 96, 97, 101, 102, 103, 105, 106, 107, 109, 113, 127, 131, 137, 139, 149, 151, 155, 156, 157, 163, 166, 167, 173, 178, 179, 180, 181, 191, 192, 193, 197, 199, 211, 222, 223, 226
Offset: 1

Views

Author

Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Apr 18 2006

Keywords

Comments

Includes all primes. - Robert Israel, Jul 25 2025

Examples

			13 is a term since nextprime(5*13) = 67 and nextprime(5)*nextprime(13) = 5*13=65 and 67 > 65.
		

Crossrefs

Union of A000040 and A117101.
Cf. A007918 (nextprime).

Programs

  • Maple
    select(n -> nextprime(5*n) > 5*nextprime(n-1), [$1..1000]); # Robert Israel, Jul 25 2025
  • Mathematica
    Select[Range[250], NextPrime[5*#] > 5*NextPrime[# - 1] &] (* Paolo Xausa, Jul 28 2025 *)
  • PARI
    for(i=1,150,if(nextprime(5*i)>nextprime(5)*nextprime(i),print1(i,",")))

Extensions

More terms from Robert Israel, Jul 25 2025
Previous Showing 81-90 of 130 results. Next