cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 1118 results. Next

A147800 Minimal value of A007947(m*(5^n-m)) with m coprime to 5.

Original entry on oeis.org

2, 6, 22, 42, 222, 366, 2046, 13962, 10626, 79926, 293262
Offset: 1

Views

Author

M. F. Hasler, Nov 13 2008

Keywords

Comments

The minima are reached for m values given in A147803.
This is related to the abc conjecture.
All terms of this sequence are even, so one could also consider A147800/2 = 1, 3, 11, 21, 111, 183, 1023, 6981, 5313, 39963, 146631, ...

Crossrefs

Cf. A007947, A147803 (m values), A143702 (analog for 2^n), A147801 (analog for 3^n), A147298 (general case).

Programs

  • PARI
    A147800(n, p=5) = {my(m=n=p^n); for(a=1, (n-1)\2, a%p || next; A007947(n-a)*A007947(a)A007947((n-a)*a)); m; }

A147802 Least m coprime to 3 minimizing A007947(m*(3^n-m)).

Original entry on oeis.org

1, 1, 2, 1, 1, 25, 139, 289, 31, 1, 16096, 49, 7424, 588665, 619115, 83521, 8000000, 1515625, 505620842, 17643776, 244140625, 5443635008
Offset: 1

Views

Author

M. F. Hasler, Nov 13 2008

Keywords

Comments

Related to the abc conjecture: Since m is coprime to 3, it is also coprime to 3^n and thus to 3^n-m. Thus A007947(m*(3^n-m)*3^n) = 3*A007947(m(3^n-m)).

Crossrefs

Cf. A007947, A143700 (analog for 2^n), A147300 (general case).

Programs

  • Mathematica
    rad[n_] := Times @@ FactorInteger[n][[All, 1]];
    a[n_] := MinimalBy[Select[Range[3^n - 2], CoprimeQ[#, 3] &], rad[# (3^n - #)] &][[1]];
    Reap[Do[Print[n, " ", an = a[n]]; Sow[an], {n, 1, 16}]][[2, 1]] (* Jean-François Alcover, Mar 27 2020 *)
  • PARI
    A147802(n, p=3) = {local(b, m=n=p^n); for(a=1, (n-1)\2, a%p || next; A007947(n-a)*A007947(a)A007947((n-a)*b=a)); b; }

Extensions

a(17) from Jean-François Alcover, Mar 28 2020
a(18)-a(22) from Giovanni Resta, Mar 29 2020

A255423 The least number k > A255334(n) for which A000203(k) = A000203(A255334(n)) and A007947(k) = A007947(A255334(n)), where A000203 gives the sum of divisors, and A007947 gives the squarefree kernel of n.

Original entry on oeis.org

2058, 10290, 22638, 26754, 34986, 39102, 47334, 51450, 59682, 52728, 63798, 76146, 84378, 88494, 96726, 109074, 113190, 121422, 125538, 133770, 137886, 146118, 150234, 162582, 170814, 174930, 183162, 195510, 199626, 207858, 211974, 220206, 224322, 232554, 236670, 249018, 257250, 261366, 269598, 281946, 286062, 294294
Offset: 1

Views

Author

Antti Karttunen, Apr 06 2015

Keywords

Crossrefs

Cf. also A255335 (same sequence sorted into ascending order), A255424 (squarefree kernel of a(n)), A255426 (same terms with but with their squarefree kernel divided out of them).

Programs

  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    nextone(n) = { if(!n,return(0)); my(r=A007947(n), s=sigma(n), k=n+r); while(kA007947(k) == r), return(k), k = k+r)); return(0); };
    i=0; for(n=1, 2^25, k = nextone(n); if(k, i++; write("b255423.txt", i, " ", k))); \\ Andrew Lelechenko, May 09 2014

Formula

a(n) = A255424(n) * A255426(n).

A255424 Squarefree kernel of A255334: a(n) = A007947(A255334(n)).

Original entry on oeis.org

42, 210, 462, 546, 714, 798, 966, 210, 1218, 78, 1302, 1554, 1722, 1806, 1974, 2226, 2310, 2478, 2562, 2730, 2814, 2982, 3066, 3318, 3486, 3570, 3738, 3990, 4074, 4242, 4326, 4494, 4578, 4746, 4830, 462, 210, 5334, 5502, 5754, 5838, 6006, 6090, 390, 6258, 6342, 6510, 6594, 6846, 7014, 546, 7266, 7518, 7602, 7770, 7854, 8022, 8106, 8274, 8358, 8610
Offset: 1

Views

Author

Antti Karttunen, Apr 06 2015

Keywords

Comments

Sequence gives value of A007947(n) for numbers n for which there exists k > n such that A000203(k) = A000203(n) and A007947(k) = A007947(n), where A000203 gives the sum of divisors, and A007947 gives the squarefree kernel of n. The sequence is ordered according to the magnitude of n, and contains duplicates, because there are cases of multiple such pairs having same squarefree kernel.
The first duplicate occurs as a(2) = a(8) = 210.

Crossrefs

Programs

Formula

a(n) = A007947(A255334(n)).
a(n) = A007947(A255423(n)). [Equally, squarefree kernel of A255423(n).]

A326142 Sum of all other divisors of n except its largest squarefree divisor: a(n) = sigma(n) - A007947(n).

Original entry on oeis.org

0, 1, 1, 5, 1, 6, 1, 13, 10, 8, 1, 22, 1, 10, 9, 29, 1, 33, 1, 32, 11, 14, 1, 54, 26, 16, 37, 42, 1, 42, 1, 61, 15, 20, 13, 85, 1, 22, 17, 80, 1, 54, 1, 62, 63, 26, 1, 118, 50, 83, 21, 72, 1, 114, 17, 106, 23, 32, 1, 138, 1, 34, 83, 125, 19, 78, 1, 92, 27, 74, 1, 189, 1, 40, 109, 102, 19, 90, 1, 176, 118, 44, 1, 182, 23, 46, 33
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    rad[n_] := Times @@ FactorInteger[n][[;; , 1]]; a[n_] := DivisorSigma[1, n] - rad[n]; Array[a, 100] (* Amiram Eldar, Dec 05 2023 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    A326142(n) = (sigma(n)-A007947(n));

Formula

a(n) = A000203(n) - A007947(n).
a(n) = n + A326143(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A013661 - A065463 = 0.940491... . - Amiram Eldar, Dec 05 2023

A364702 Numbers k in A361098 that are not divisible by A007947(k)^2.

Original entry on oeis.org

48, 50, 54, 75, 80, 96, 98, 112, 135, 147, 160, 162, 189, 192, 224, 240, 242, 245, 250, 252, 270, 294, 300, 320, 336, 338, 350, 352, 360, 363, 375, 378, 384, 396, 405, 416, 448, 450, 468, 480, 486, 490, 504, 507, 525, 528, 540, 550, 560, 567, 578, 588, 594, 600
Offset: 1

Views

Author

Michael De Vlieger, Aug 03 2023

Keywords

Comments

Subset of A126706, the set of numbers k neither prime powers nor squarefree, i.e., k such that A001222(k) > A001221(k) > 1.
Let p = A119288(k) be the second smallest prime factor of k. Let q = A053669(k) be the smallest prime that does not divide k. Let r = rad(k) = A007947(k) be the squarefree kernel of k. Define sequence S = A361098 = {k : Omega(k) > omega(k) > 1, q*r < k, p*r <= k} = A361098.
Sequence T = A286708 represents numbers in A001694 that are not prime powers. Numbers k in T are such that k = m*r^2, m >= 1, by definition. Since we may rewrite q*r < k instead as q*r < m*r^2, it is clear since omega(r) > 1, that q < r. Further, we may rewrite p*r <= k instead as p*r <= m*r^2, and since p | r, p < r as omega(r) > 1, we see that S contains T.
This sequence gives k that are in S but not in T.

Examples

			Let B = A126706.
B(1) = 12 is not in the sequence since 3*6 > 12.
B(2) = 18 is not in the sequence, since, though 3*6 = 18, 5*6 > 18.
B(6) = S(1) = 36 is not in the sequence since, though 3*6 < 36 and 5*6 < 36, rad(36)^2 = 6^2 | 36, hence B(6) = T(1).
B(10) = S(2) = a(1) = 48 is in the sequence since rad(48) = 6, and 6^2 does not divide 48.
B(11) = S(3) = a(2) = 50 is in the sequence since rad(50) = 10, and 10^2 does not divide 50, etc.
		

Crossrefs

Programs

  • Mathematica
    nn = 2^10; a053669[n_] := If[OddQ[n], 2, p = 2; While[Divisible[n, p], p = NextPrime[p]]; p]; s = Select[Range[nn], Nor[PrimePowerQ[#], SquareFreeQ[#]] &]; Reap[Do[n = s[[j]]; If[And[#1*a053669[n] < n, #1*#2 <= n, ! Divisible[n, #1^2]] & @@ {Times @@ #, #[[2]]} &@ FactorInteger[n][[All, 1]], Sow[n]], {j, Length[s]}] ][[-1, -1]]

Formula

This sequence is A361098 \ A286708.

A370896 Partial alternating sums of the squarefree kernel function (A007947).

Original entry on oeis.org

1, -1, 2, 0, 5, -1, 6, 4, 7, -3, 8, 2, 15, 1, 16, 14, 31, 25, 44, 34, 55, 33, 56, 50, 55, 29, 32, 18, 47, 17, 48, 46, 79, 45, 80, 74, 111, 73, 112, 102, 143, 101, 144, 122, 137, 91, 138, 132, 139, 129, 180, 154, 207, 201, 256, 242, 299, 241, 300, 270, 331, 269
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2024

Keywords

Crossrefs

Similar sequences: A068762, A068773, A307704, A357817, A362028.

Programs

  • Mathematica
    rad[n_] := Times @@ (First[#]& /@ FactorInteger[n]); Accumulate[Array[(-1)^(#+1) * rad[#] &, 100]]
  • PARI
    rad(n) = vecprod(factor(n)[, 1]);
    lista(kmax) = {my(s = 0); for(k = 1, kmax, s += (-1)^(k+1) * rad(k); print1(s, ", "))};

Formula

a(n) = Sum_{k=1..n} (-1)^(k+1) * A007947(k).
a(n) = c * n^2 + O(R(n)), where c = A065463 / 10 = 0.07044422..., R(n) = x^(3/2)*exp(-c_1*log(n)^(3/5)/log(log(n))^(1/5)) unconditionally, or x^(7/5)*exp(c_2*log(n)/log(log(n))) assuming the Riemann hypothesis, and c_1 and c_2 are positive constants (Tóth, 2017).

A376846 Number of m <= n such that rad(m) | n and Omega(m) > Omega(n), where rad = A007947 and Omega = A001222.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 2, 0, 1, 0, 2, 0, 0, 1, 3, 0, 1, 0, 3, 1, 1, 0, 4, 0, 2, 0, 3, 0, 0, 0, 3, 1, 2, 0, 2, 0, 1, 1, 3, 0, 2, 0, 3, 0, 0, 0, 7, 0, 3, 1, 5, 0, 1, 0, 4, 0, 3, 0, 8, 0, 1, 0, 4, 0, 4, 0, 4, 2
Offset: 1

Views

Author

Michael De Vlieger, Oct 06 2024

Keywords

Comments

Number of m not exceeding n such that the squarefree kernel of m divides n, and m has more prime factors with repetition than does n.
Number of m in row n of A162306 such that Omega(m) > Omega(n).

Examples

			Table of select n such that a(n) > 0:
   n  a(n)  List of m such that Omega(m) > Omega(n).
  -------------------------------------------------
  10   1    {8}
  14   1    {8}
  18   1    {16}
  20   1    {16}
  22   2    {8, 16}
  26   2    {8, 16}
  28   1    {16}
  30   2    {16, 24}
  33   1    {27}
  34   3    {8, 16, 32}
  36   1    {32}
  38   3    {8, 16, 32}
  39   1    {27}
  40   1    {32}
  42   4    {16, 24, 32, 36}
		

Crossrefs

Programs

  • Mathematica
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
    {0}~Join~Table[With[{k = PrimeOmega[n]}, Count[Range[n], _?(And[Divisible[n, rad[#]], PrimeOmega[#] > k] &)]], {n, 2, 120}]

Formula

a(n) = card({m <= n : rad(m) | n, Omega(m) > Omega(n) }).
a(n) = 0 for prime power n (in A000961).
a(n) < A010846(n).

A381800 a(n) = number of distinct residues r mod n of numbers k such that rad(k) | n, where rad = A007947.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 2, 4, 3, 7, 2, 8, 2, 6, 8, 5, 2, 12, 2, 9, 9, 13, 2, 11, 3, 15, 4, 9, 2, 19, 2, 6, 9, 11, 12, 16, 2, 21, 6, 12, 2, 24, 2, 16, 15, 14, 2, 16, 3, 28, 20, 17, 2, 31, 8, 12, 21, 31, 2, 28, 2, 8, 13, 7, 10, 32, 2, 13, 15, 35, 2, 20, 2, 39, 29, 24
Offset: 1

Views

Author

Michael De Vlieger, Mar 07 2025

Keywords

Examples

			 n  a(n)  row n of A381801
----------------------------------------------
 1    1   {0}
 2    2   {0,1}
 3    2   {0,1}
 4    3   {0,1,2}
 6    5   {0,1,2,3,4}
 8    4   {0,1,2,4}
10    7   {0,1,2,4,5,6,8}
12    8   {0,1,2,3,4,6,8,9}
14    6   {0,1,2,4,7,8}
15    8   {0,1,3,5,6,9,10,12}
18   12   {0,1,2,3,4,6,8,9,10,12,14,16}
20    9   {0,1,2,4,5,8,10,12,16}
21    9   {0,1,3,6,7,9,12,15,18}
22   13   {0,1,2,4,6,8,10,11,12,14,16,18,20}
24   11   {0,1,2,3,4,6,8,9,12,16,18}
26   15   {0,1,2,4,6,8,10,12,13,14,16,18,20,22,24}
28    9   {0,1,2,4,7,8,14,16,21}
30   19   {0,1,2,3,4,5,6,8,9,10,12,15,16,18,20,21,24,25,27}
36   16   {0,1,2,3,4,6,8,9,12,16,18,20,24,27,28,32}
		

Crossrefs

Programs

  • Mathematica
    Table[CountDistinct@ Flatten@ Mod[TensorProduct @@ Map[(p = #; NestWhileList[Mod[p*#, n] &, 1, UnsameQ, All]) &, FactorInteger[n][[All, 1]]], n], {n, 120}]

Formula

a(n) = length of row n of A381801.
a(1) = 1 since 1 is the empty product.
A010846(n) <= a(n) <= A051953(n).
a(n) >= 2 for n > 1.
For prime p, a(p) = A010846(p^m) = A000005(p^m) = A381798(p) = 2.
For prime power p^m, m > 0, a(p^m) = A010846(p^m) = A000005(p^m) = A381798(p^m) = m+1.
For n in A024619, a(n) > A381798(n).

A078318 Sum of divisors of n*rad(n)+1, where rad = A007947 (squarefree kernel).

Original entry on oeis.org

3, 6, 18, 13, 42, 38, 93, 18, 56, 102, 186, 74, 324, 198, 342, 48, 540, 110, 546, 272, 756, 588, 972, 180, 312, 678, 126, 528, 1266, 972, 1596, 84, 1980, 1260, 1842, 256, 2484, 1842, 2286, 402, 2613, 2124, 3534, 1440, 1281, 2220, 4536, 307, 660, 672
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Crossrefs

Programs

  • Haskell
    a078318 = a000203 . a078310  -- Reinhard Zumkeller, Jul 23 2013
  • Mathematica
    a[n_] := DivisorSigma[1, 1 + n * Times @@ FactorInteger[n][[;;, 1]]]; Array[a, 100] (* Amiram Eldar, Apr 10 2025 *)
  • PARI
    rad(n)=vecprod(factor(n)[,1])
    a(n)=sigma(n*rad(n)+1) \\ Charles R Greathouse IV, Jul 09 2013
    

Formula

a(n) = A000203(A078310(n)).
Previous Showing 41-50 of 1118 results. Next