A147800 Minimal value of A007947(m*(5^n-m)) with m coprime to 5.
2, 6, 22, 42, 222, 366, 2046, 13962, 10626, 79926, 293262
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
rad[n_] := Times @@ FactorInteger[n][[All, 1]]; a[n_] := MinimalBy[Select[Range[3^n - 2], CoprimeQ[#, 3] &], rad[# (3^n - #)] &][[1]]; Reap[Do[Print[n, " ", an = a[n]]; Sow[an], {n, 1, 16}]][[2, 1]] (* Jean-François Alcover, Mar 27 2020 *)
A147802(n, p=3) = {local(b, m=n=p^n); for(a=1, (n-1)\2, a%p || next; A007947(n-a)*A007947(a)A007947((n-a)*b=a)); b; }
A007947(n) = factorback(factorint(n)[, 1]); nextone(n) = { if(!n,return(0)); my(r=A007947(n), s=sigma(n), k=n+r); while(kA007947(k) == r), return(k), k = k+r)); return(0); }; i=0; for(n=1, 2^25, k = nextone(n); if(k, i++; write("b255423.txt", i, " ", k))); \\ Andrew Lelechenko, May 09 2014
rad[n_] := Times @@ FactorInteger[n][[;; , 1]]; a[n_] := DivisorSigma[1, n] - rad[n]; Array[a, 100] (* Amiram Eldar, Dec 05 2023 *)
A007947(n) = factorback(factorint(n)[, 1]); A326142(n) = (sigma(n)-A007947(n));
Let B = A126706. B(1) = 12 is not in the sequence since 3*6 > 12. B(2) = 18 is not in the sequence, since, though 3*6 = 18, 5*6 > 18. B(6) = S(1) = 36 is not in the sequence since, though 3*6 < 36 and 5*6 < 36, rad(36)^2 = 6^2 | 36, hence B(6) = T(1). B(10) = S(2) = a(1) = 48 is in the sequence since rad(48) = 6, and 6^2 does not divide 48. B(11) = S(3) = a(2) = 50 is in the sequence since rad(50) = 10, and 10^2 does not divide 50, etc.
nn = 2^10; a053669[n_] := If[OddQ[n], 2, p = 2; While[Divisible[n, p], p = NextPrime[p]]; p]; s = Select[Range[nn], Nor[PrimePowerQ[#], SquareFreeQ[#]] &]; Reap[Do[n = s[[j]]; If[And[#1*a053669[n] < n, #1*#2 <= n, ! Divisible[n, #1^2]] & @@ {Times @@ #, #[[2]]} &@ FactorInteger[n][[All, 1]], Sow[n]], {j, Length[s]}] ][[-1, -1]]
rad[n_] := Times @@ (First[#]& /@ FactorInteger[n]); Accumulate[Array[(-1)^(#+1) * rad[#] &, 100]]
rad(n) = vecprod(factor(n)[, 1]); lista(kmax) = {my(s = 0); for(k = 1, kmax, s += (-1)^(k+1) * rad(k); print1(s, ", "))};
Table of select n such that a(n) > 0: n a(n) List of m such that Omega(m) > Omega(n). ------------------------------------------------- 10 1 {8} 14 1 {8} 18 1 {16} 20 1 {16} 22 2 {8, 16} 26 2 {8, 16} 28 1 {16} 30 2 {16, 24} 33 1 {27} 34 3 {8, 16, 32} 36 1 {32} 38 3 {8, 16, 32} 39 1 {27} 40 1 {32} 42 4 {16, 24, 32, 36}
rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; {0}~Join~Table[With[{k = PrimeOmega[n]}, Count[Range[n], _?(And[Divisible[n, rad[#]], PrimeOmega[#] > k] &)]], {n, 2, 120}]
n a(n) row n of A381801 ---------------------------------------------- 1 1 {0} 2 2 {0,1} 3 2 {0,1} 4 3 {0,1,2} 6 5 {0,1,2,3,4} 8 4 {0,1,2,4} 10 7 {0,1,2,4,5,6,8} 12 8 {0,1,2,3,4,6,8,9} 14 6 {0,1,2,4,7,8} 15 8 {0,1,3,5,6,9,10,12} 18 12 {0,1,2,3,4,6,8,9,10,12,14,16} 20 9 {0,1,2,4,5,8,10,12,16} 21 9 {0,1,3,6,7,9,12,15,18} 22 13 {0,1,2,4,6,8,10,11,12,14,16,18,20} 24 11 {0,1,2,3,4,6,8,9,12,16,18} 26 15 {0,1,2,4,6,8,10,12,13,14,16,18,20,22,24} 28 9 {0,1,2,4,7,8,14,16,21} 30 19 {0,1,2,3,4,5,6,8,9,10,12,15,16,18,20,21,24,25,27} 36 16 {0,1,2,3,4,6,8,9,12,16,18,20,24,27,28,32}
Table[CountDistinct@ Flatten@ Mod[TensorProduct @@ Map[(p = #; NestWhileList[Mod[p*#, n] &, 1, UnsameQ, All]) &, FactorInteger[n][[All, 1]]], n], {n, 120}]
a078318 = a000203 . a078310 -- Reinhard Zumkeller, Jul 23 2013
a[n_] := DivisorSigma[1, 1 + n * Times @@ FactorInteger[n][[;;, 1]]]; Array[a, 100] (* Amiram Eldar, Apr 10 2025 *)
rad(n)=vecprod(factor(n)[,1]) a(n)=sigma(n*rad(n)+1) \\ Charles R Greathouse IV, Jul 09 2013
Comments