cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 1118 results. Next

A172420 Numbers k that have measure of smoothness J larger than 5, where J = log(k)/log(rad(k)) and rad(k) is the product of the distinct prime divisors of k (A007947).

Original entry on oeis.org

64, 128, 256, 512, 729, 1024, 2048, 2187, 4096, 6561, 8192, 8748, 9216, 10368, 11664, 12288, 13122, 13824, 15552, 15625, 16384, 17496, 18432, 19683, 20736, 23328, 24576, 26244, 27648, 31104, 32768, 34992, 36864, 39366, 41472, 46656, 49152
Offset: 1

Views

Author

Artur Jasinski, Feb 02 2010

Keywords

Comments

This sequence is a subsequence of A049094, A172418, and A172419.

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[kk = FactorInteger[c]; nn = 1; Do[nn = nn*kk[[n]][[1]], {n, 1, Length[kk]}]; If[Log[c]/Log[nn] > 5, AppendTo[aa, c]], {c, 2, 10000}]; aa
    Select[Range[2,50000],Log[Times@@FactorInteger[#][[All,1]],#]>5&] (* Harvey P. Dale, Apr 30 2018 *)

A172421 Numbers k that have measure of smoothness J larger than 6, where J = log(k)/log(rad(k)) and rad(k) is the product of the distinct prime divisors of k (A007947).

Original entry on oeis.org

128, 256, 512, 1024, 2048, 2187, 4096, 6561, 8192, 16384, 19683, 32768, 49152, 52488, 55296, 59049, 62208, 65536, 69984, 73728, 78125, 78732, 82944, 93312, 98304, 104976, 110592, 118098, 124416, 131072, 139968, 147456, 157464, 165888, 177147, 186624, 196608
Offset: 1

Views

Author

Artur Jasinski, Feb 02 2010

Keywords

Comments

This sequence is a subsequence of A049094, A172418, A172419, and A172420.

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[kk = FactorInteger[c]; nn = 1; Do[nn = nn*kk[[n]][[1]], {n, 1, Length[kk]}]; If[Log[c]/Log[nn] > 6, AppendTo[aa, c]], {c, 2, 10000}]; aa

Extensions

More terms from Amiram Eldar, Mar 10 2020

A172422 Numbers k that have measure of smoothness J larger than 7, where J = log(k)/log(rad(k)) and rad(k) is the product of the distinct prime divisors of k (A007947).

Original entry on oeis.org

256, 512, 1024, 2048, 4096, 6561, 8192, 16384, 19683, 32768, 59049, 65536, 131072, 177147, 262144, 294912, 314928, 331776, 354294, 373248, 390625, 393216, 419904, 442368, 472392, 497664, 524288, 531441, 559872, 589824, 629856, 663552, 708588, 746496, 786432
Offset: 1

Views

Author

Artur Jasinski, Feb 02 2010

Keywords

Comments

This sequence is a subsequence of A049094, A172418, A172419, A172420, and A172421.

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[kk = FactorInteger[c]; nn = 1; Do[nn = nn*kk[[n]][[1]], {n, 1, Length[kk]}]; If[Log[c]/Log[nn] > 7, AppendTo[aa, c]], {c, 2, 10000}]; aa

Extensions

More terms from Amiram Eldar, Mar 10 2020

A224866 Numbers of the form m*rad(m)+1, where rad = A007947 (squarefree kernel).

Original entry on oeis.org

2, 5, 9, 10, 17, 26, 28, 33, 37, 50, 65, 73, 82, 101, 109, 122, 126, 129, 145, 170, 197, 201, 217, 226, 244, 257, 289, 290, 325, 344, 362, 393, 401, 433, 442, 485, 501, 513, 530, 577, 626, 649, 676, 677, 730, 785, 801, 842, 865, 901, 962, 969, 973, 1001
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 23 2013

Keywords

Comments

A078310 in natural order.

Crossrefs

Subsequences: A078325, A078324.

Programs

  • Haskell
    a224866 n = a224866_list !! (n-1)
    a224866_list = [x | x <- [2..] , let x' = x - 1, let k = a007947 x',
                        let (y,m) = divMod x' k, m == 0, a007947 y == k]
    
  • Mathematica
    powQ[n_] := n == 1 || AllTrue[FactorInteger[n][[;; , 2]], # > 1 &]; Select[Range[1001], powQ[# - 1] &] (* Amiram Eldar, Jul 31 2022 *)
  • PARI
    is(n) = n>1 && ispowerful(n-1) \\ Charles R Greathouse IV, Aug 08 2013, corrected by Amiram Eldar, Jul 31 2022

Formula

a(n) = A001694(n) + 1.

A360543 a(n) = number of numbers k < n, gcd(k, n) > 1, such that omega(k) > omega(n) and rad(n) | rad(k), where omega(n) = A001221(n) and rad(n) = A007947(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 6, 0, 0, 0, 0, 11, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 5, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 1, 26, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 0, 3, 23, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 7, 0, 3, 1, 4
Offset: 1

Views

Author

Michael De Vlieger, Mar 06 2023

Keywords

Examples

			a(4) = 0 since k = 1..3 are prime powers.
a(8) = 1 since only k = 6 is such that p = 3, q = 5, but gcd(6, 10) = 2.
a(9) = 1 since the following satisfies definition: {6},
a(16) = 4, i.e., {6, 10, 12, 14},
a(25) = 3, i.e., {10, 15, 20},
a(27) = 6, i.e., {6, 12, 15, 18, 21, 24},
a(32) = 11, i.e., {6, 10, 12, 14, 18, 20, 22, 24, 26, 28, 30},
a(36) = 1, i.e., {30},
a(40) = 1, i.e., {30},
a(45) = 1, i.e., {30}, etc.
		

Crossrefs

Programs

  • Mathematica
    nn = 120; rad[n_] := rad[n] = Times @@ FactorInteger[n][[All, 1]]; c = Select[Range[4, nn], CompositeQ]; Table[Function[{q, r}, Count[TakeWhile[c, # <= n &], _?(And[PrimeNu[#] > q, Divisible[rad[#], r]] &)]] @@ {PrimeNu[n], rad[n]}, {n, nn}]

Formula

a(n) = A243823(n) - A360480(n).
a(n) = A045763(n) - A243822(n) - A360480(n).
a(n) = A051953(n) - A000005(n) - A243822(n) - A360480(n).
a(n) = A051953(n) - A010846(n) - A360480(n).
a(n) = A243823(n) = A045763(n) for n in A246547.
For prime power n = p^e, n > 1, a(n) = p^(e-1) - e.
For n in A360765, a(n) > 0.

A377070 Irregular triangle where row n lists m such that rad(m) | n and bigomega(m) = bigomega(n), where rad = A007947 and bigomega = A001222.

Original entry on oeis.org

1, 2, 3, 4, 5, 4, 6, 9, 7, 8, 9, 4, 10, 25, 11, 8, 12, 18, 27, 13, 4, 14, 49, 9, 15, 25, 16, 17, 8, 12, 18, 27, 19, 8, 20, 50, 125, 9, 21, 49, 4, 22, 121, 23, 16, 24, 36, 54, 81, 25, 4, 26, 169, 27, 8, 28, 98, 343, 29, 8, 12, 18, 20, 27, 30, 45, 50, 75, 125, 31
Offset: 1

Views

Author

Michael De Vlieger, Oct 25 2024

Keywords

Comments

Row n is a finite set of products of prime power factors p^k (i.e., p^k | n) such that Sum_{p|n} k = bigomega(n), that is, numbers m such that rad(m) | n and m has the same number of prime factors with repetition than does n.

Examples

			Triangle begins:
    n    row n of this sequence:
   -------------------------------------------
    1:   {1}
    2:   {2}
    3:   {3}
    4:   {4}
    5:   {5}
    6:   {4, 6, 9}
    7:   {7}
    8:   {8}
    9:   {9}
   10:   {4, 10, 25}
   ...                       (Select rows appear below)
   12:   {8, 12, 18, 27}
   14:   {4, 14, 49}
   15:   {9, 15, 25}
   18:   {8, 12, 18, 27}
   20:   {8, 20, 50, 125}
   24:   {16, 24, 36, 54, 81}
   30:   {8, 12, 18, 20, 27, 30, 45, 50, 75, 125}
   42:   {8, 12, 18, 27, 28, 42, 63, 98, 147, 343}
   60:   {16, 24, 36, 40, 54, 60, 81, 90, 100, 135, 150, 225, 250, 375, 625}.
.
Diagrams of the rank omega(n)-1 simplexes created by row n of this sequence for select n, ordering k in row n by prime decomposition. The number k = n appears in brackets:
Rank 3:
   n = 30:                    n = 42:
             8                         8
           /  \                      /  \
         12 -- 20                  12 -- 28
        /  \  /  \                /  \  /  \
      18 --[30]-- 50            18 --[42]-- 98
     /  \  /  \  /  \          /  \  /  \  /  \
   27 -- 45 -- 75 -- 125     27 -- 63 --147 -- 343
.
   n = 60:     16
              /  \
            24 -- 40
           /  \  /  \
         36 --[60]-- 50
        /  \  /  \  /  \
      54 -- 90 -- 75 --125
     /  \  /  \  /  \  /  \
   81 --150 --135 --375 --625
.
Rank 4:
   n = 210:
   16
        40
   24   56
             100
        60   140
   36   84   196
                   250
             150   350
        90  [210]  490
   54  126   294   686
                            625
                     375    875
              225    525   1225
        135   315    735   1715
   81   189   441   1029   2401
		

Crossrefs

Programs

  • Mathematica
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
    Table[k = PrimeOmega[n]; Select[Range[n^PrimeNu[n]], Divisible[n, rad[#]] && PrimeOmega[#] == k &], {n, 30}]

Formula

Row n of this sequence is { m : rad(m) | n, bigomega(m) = bigomega(n) }.
For prime p, row p of this sequence is {p}, generally for prime power p^k, row p^k of this sequence is {p^k}.
For n in A024619, row n of this sequence has more than 1 term.
A377071(n) = length of row n of this sequence.

A379368 Denominators of the partial sums of the reciprocals of the squarefree kernel function (A007947).

Original entry on oeis.org

1, 2, 6, 3, 15, 10, 70, 35, 105, 210, 2310, 385, 5005, 10010, 30030, 15015, 255255, 510510, 9699690, 4849845, 4849845, 9699690, 223092870, 111546435, 22309287, 44618574, 44618574, 3187041, 92424189, 308080630, 9550499530, 4775249765, 1302340845, 2604681690, 18232771830
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2024

Keywords

References

  • Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions, North-Holland Publishing Company, Amsterdam, Netherlands, 1980. See pp. 16-17.

Crossrefs

Cf. A007947, A073355, A370896, A379367 (numerators), A379370.

Programs

  • Mathematica
    rad[n_] := Times @@ FactorInteger[n][[;;, 1]]; Denominator[Accumulate[Table[1/rad[n], {n, 1, 50}]]]
  • PARI
    rad(n) = vecprod(factor(n)[, 1]);
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / rad(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} 1/A007947(k)).

A381096 Number of k <= n such that k is neither coprime to n and rad(k) != rad(n), where rad = A007947.

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 0, 1, 1, 5, 0, 6, 0, 7, 6, 4, 0, 10, 0, 10, 8, 11, 0, 13, 3, 13, 6, 14, 0, 21, 0, 11, 12, 17, 10, 20, 0, 19, 14, 21, 0, 29, 0, 22, 19, 23, 0, 28, 5, 28, 18, 26, 0, 33, 14, 29, 20, 29, 0, 42, 0, 31, 25, 26, 16, 45, 0, 34, 24, 45, 0, 42, 0, 37
Offset: 1

Views

Author

Michael De Vlieger, Feb 14 2025

Keywords

Comments

Number of k <= n in the cototient of n that do not share the same squarefree kernel as n.
Define a number k "neutral" to n to be such that 1 < gcd(k,n) < k, that is, k neither divides n nor is coprime to n. A045763(n) is the number of k < n such that k is neutral to n.
Define quality Q(k) to be true if k is such that 1 < gcd(k,n) and rad(k) != rad(n).
Then for k <= n and n > 1, a(n) = A045763(n), but admitting divisors k | n such that rad(k) != rad(n), and eliminating occasional nondivisors k such that rad(k) = rad(n), i.e., k listed in row n of A359929 for n = A360768(i).

Examples

			a(6) = 3 since {2, 3, 4} are neither coprime to 6 and do not have the squarefree kernel 6.
a(8) = 1 since only 6 is neither coprime to 8 and does not share the squarefree kernel 2 with 8.
a(10) = 5 since {2, 4, 5, 6, 8} are neither coprime to 10 nor have the squarefree kernel 10.
a(12) = 6 since {2, 3, 4, 8, 9, 10} are neither coprime to 12 nor have the squarefree kernel 6.
a(14) = 7 since {2, 4, 6, 7, 8, 10, 12} are neither coprime to 14 nor have the squarefree kernel 14, etc.
		

Crossrefs

Programs

  • Mathematica
    {0}~Join~Table[n - EulerPhi[n] - DivisorSigma[0, n/rad[n]], {n, 2, 120}]

Formula

a(1) = 0, a(p) = a(4) = 0.
a(n) = A045763(n) - A005361(n).
For n > 1, a(n) = n - phi(n) - tau(n/rad(n)) = A000010(n) - A005361(n).
For n > 1, a(n) = n - A000010(n) - A008479(n) + A355432(n).

A066301 a(n) = 0 if n is squarefree, otherwise 1 + a(n/rad(n)) where rad = A007947 (squarefree kernel).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 4, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 3, 1, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 1, 0, 0, 1, 5, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 3, 3, 0, 0, 1, 0, 0, 0, 2, 0, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 01 2002

Keywords

Comments

This sequence is not the same as A046660.

Examples

			a(24) = 1 + a(24/rad(24)) = 1 + a(24/6) = 1 + a(4) = 1 + (1+a(4/rad(4))) = 1 + (1+a(4/2)) = 2 + a(2) = 2 + 0 = 2.
		

Crossrefs

Programs

  • Haskell
    a066301 1 = 0
    a066301 n = a051903 n - 1  -- Reinhard Zumkeller, Jul 23 2013
  • Mathematica
    a[n_] := Max[FactorInteger[n][[;;, 2]]] - 1; Array[a, 100] (* Amiram Eldar, Jan 05 2024 *)
  • PARI
    a(n)=if(n>1, vecmax(factor(n)[,2])-1, 0) \\ Charles R Greathouse IV, Jul 15 2013
    

Formula

a(n) = A051903(n)-1 for n > 1, a(1) = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A033150 - 1 = 0.705211... . - Amiram Eldar, Jan 05 2024

A075423 rad(n) - 1, where rad(n) is the squarefree kernel of n (A007947).

Original entry on oeis.org

0, 1, 2, 1, 4, 5, 6, 1, 2, 9, 10, 5, 12, 13, 14, 1, 16, 5, 18, 9, 20, 21, 22, 5, 4, 25, 2, 13, 28, 29, 30, 1, 32, 33, 34, 5, 36, 37, 38, 9, 40, 41, 42, 21, 14, 45, 46, 5, 6, 9, 50, 25, 52, 5, 54, 13, 56, 57, 58, 29, 60, 61, 20, 1, 64, 65, 66, 33, 68, 69, 70, 5, 72, 73, 14, 37, 76, 77
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 15 2002

Keywords

Comments

a(n) < n for all n, see A075425.

Crossrefs

A075424(n) = a(a(n)) for n>1.

Programs

Previous Showing 61-70 of 1118 results. Next