cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A073183 Sum of divisors of n that are not greater than the cubefree kernel of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 7, 13, 18, 12, 28, 14, 24, 24, 7, 18, 39, 20, 42, 32, 36, 24, 36, 31, 42, 13, 56, 30, 72, 32, 7, 48, 54, 48, 91, 38, 60, 56, 50, 42, 96, 44, 84, 78, 72, 48, 36, 57, 93, 72, 98, 54, 39, 72, 64, 80, 90, 60, 168, 62, 96, 104, 7, 84, 144, 68, 126, 96, 144, 72
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 19 2002

Keywords

Comments

a(n) >= A073185(n).

Examples

			The cubefree kernel of 56 = 7 * 2^3 is 28 = 7 * 2^2 and the divisors <= 28 of 56 are {1, 2, 4, 7, 8, 14, 28}, therefore a(56) = 1 + 2 + 4 + 7 + 8 + 14 + 28 = 64.
		

Crossrefs

Programs

  • Mathematica
    sdcfk[n_]:=Module[{cf=Times@@Flatten[Table[#[[1]],#[[2]]]&/@({#[[1]],If[ #[[2]]>2,2,#[[2]]]}&/@FactorInteger[n])]},Total[Select[Divisors[n],#<= cf&]]]; Array[sdcfk,80] (* Harvey P. Dale, Jul 14 2018 *)
  • PARI
    a007948(n) = my(f=factor(n)); for (i=1, #f~, f[i, 2] = min(f[i, 2], 2)); factorback(f);
    a(n) = sumdiv(n, d, d*(d<=a007948(n))); \\ Michel Marcus, Feb 07 2015

A097380 Numbers m such that 1+CubeFreeKernel(m) is prime.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 16, 18, 22, 24, 28, 30, 32, 36, 42, 46, 48, 52, 54, 56, 58, 60, 64, 66, 70, 72, 78, 82, 96, 100, 102, 104, 106, 108, 112, 120, 126, 128, 130, 138, 144, 148, 150, 156, 162, 166, 172, 178, 180, 190, 192, 196, 198, 200, 208, 210, 216, 222, 224, 226
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 11 2004

Keywords

Examples

			m = 216 = (2*3)^3 -> A097377(216) = 1+(2*3)^2 = 37 = A000040(12), therefore 216 is a term.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Min[e, 2]; s[1] = 2; s[n_] := 1 + Times @@ f @@@ FactorInteger[n]; Select[Range[230], PrimeQ[s[#]] &] (* Amiram Eldar, Feb 01 2024 *)
  • PARI
    is(n) = {my(f = factor(n)); isprime(1 + prod(i = 1, #f~, f[i, 1]^min(f[i, 2], 2)));} \\ Amiram Eldar, Feb 01 2024

Formula

A097377(a(n)) = A007948(a(n))+1 is prime.

A382902 The largest cubefree divisor of the n-th biquadratefree number.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 4, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 12, 25, 26, 9, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 20, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 18, 55, 28, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 36
Offset: 1

Views

Author

Amiram Eldar, Apr 08 2025

Keywords

Crossrefs

Similar sequences: A382903, A382904, A382905, A382906.

Programs

  • Mathematica
    f[p_, e_] := p^Min[e, 2]; s[n_] := Module[{fct = FactorInteger[n]}, If[AllTrue[fct[[;; , 2]], # < 4 &], Times @@ f @@@ fct, Nothing]]; Array[s, 100]
  • PARI
    list(lim) = {my(f); print1(1, ", "); for(k = 2, lim, f = factor(k); if(vecmax(f[, 2]) < 4, print1(prod(i = 1, #f~, f[i, 1]^min(f[i, 2], 2)), ", ")));}

Formula

a(n) = A007948(A046100(n)).
a(n) = (A382903(n) * A046100(n)^2)^(1/3).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(4)^2 * Product_{p prime} (1 - 1/p^3 + 1/p^4 - 1/p^5) = 1.01974824991243823979... .

A097381 Numbers m such that 1+SquareFreeKernel(m)*CubeFreeKernel(m) is prime.

Original entry on oeis.org

1, 2, 6, 10, 12, 14, 18, 24, 26, 48, 54, 60, 66, 74, 84, 94, 96, 98, 110, 120, 130, 132, 134, 146, 162, 168, 170, 192, 204, 206, 210, 230, 234, 240, 264, 300, 314, 326, 336, 372, 384, 386, 406, 408, 430, 466, 470, 474, 480, 486, 490, 528, 570, 588, 600, 634, 646
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 11 2004

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(1 + Min[e, 2]); s[1] = 2; s[n_] := 1 + Times @@ f @@@ FactorInteger[n]; Select[Range[650], PrimeQ[s[#]] &] (* Amiram Eldar, Feb 01 2024 *)
  • PARI
    is(n) = {my(f = factor(n)); isprime(1 + prod(i = 1, #f~, f[i, 1]^(1 + min(f[i, 2], 2))));} \\ Amiram Eldar, Feb 01 2024

Formula

A097378(a(n)) is prime.

A076998 Difference between cubefree and squarefree components of n.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 2, 6, 0, 0, 6, 0, 0, 0, 2, 0, 12, 0, 10, 0, 0, 0, 6, 20, 0, 6, 14, 0, 0, 0, 2, 0, 0, 0, 30, 0, 0, 0, 10, 0, 0, 0, 22, 30, 0, 0, 6, 42, 40, 0, 26, 0, 12, 0, 14, 0, 0, 0, 30, 0, 0, 42, 2, 0, 0, 0, 34, 0, 0, 0, 30, 0, 0, 60, 38, 0, 0, 0, 10, 6, 0, 0, 42, 0, 0, 0, 22, 0, 60, 0, 46
Offset: 1

Views

Author

Jon Perry, Nov 28 2002

Keywords

Examples

			a(4)=2 as cubefree(4)=4 and squarefree(4)=2. 4-2=2
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{f = FactorInteger[n]}, Times @@ (First[#]^Min[Last[#], 2] & /@ f) - Times @@ (First[#] & /@ f)]; Array[a, 100] (* Amiram Eldar, Sep 24 2023 *)
  • PARI
    rad(n)=local(p,i); p=factor(n)[,1]; prod(i=1,length(p),p[i])
    rad2(n)=local(p,pn,i); p=factor(n)[,1]; pn=factor(n)[,2]; prod(i=1,length(p),p[i]^min(2,pn[i]))
    for (k=1,100,print1(rad2(k)-rad(k)", "))
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^min(f[i,2],2)) - vecprod(f[,1]);} \\ Amiram Eldar, Sep 24 2023

Formula

a(n) = A007948(n) - A007947(n). - Antti Karttunen, Jul 21 2018
From Amiram Eldar, Sep 24 2023: (Start)
a(n) >= 0, with equality if and only if n is squarefree (A005117).
Sum_{k=1..n} a(k) ~ (1/2) * c * n^2, where c = A065465 - A065463 = 0.17707163872600518419... . (End)

A097377 a(n) = CubeFreeKernel(n) + 1.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 5, 10, 11, 12, 13, 14, 15, 16, 5, 18, 19, 20, 21, 22, 23, 24, 13, 26, 27, 10, 29, 30, 31, 32, 5, 34, 35, 36, 37, 38, 39, 40, 21, 42, 43, 44, 45, 46, 47, 48, 13, 50, 51, 52, 53, 54, 19, 56, 29, 58, 59, 60, 61, 62, 63, 64, 5, 66, 67, 68, 69, 70, 71, 72, 37, 74, 75
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 11 2004

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Min[e, 2]; a[1] = 2; a[n_] := 1 + Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 01 2024 *)
  • PARI
    a(n) = {my(f = factor(n)); 1 + prod(i = 1, #f~, f[i, 1]^min(f[i, 2], 2));} \\ Amiram Eldar, Feb 01 2024

Formula

a(n) = A007948(n) + 1.
Dirichlet g.f.: zeta(s) * (1 + Product_{p prime} (1 + 1/p^(s-1) - 1/p^s + 1/p^(2*s-2) - 1/p^(2*s-1)). - Amiram Eldar, Feb 01 2024

A097378 a(n) = SquareFreeKernel(n)*CubeFreeKernel(n) + 1.

Original entry on oeis.org

2, 5, 10, 9, 26, 37, 50, 9, 28, 101, 122, 73, 170, 197, 226, 9, 290, 109, 362, 201, 442, 485, 530, 73, 126, 677, 28, 393, 842, 901, 962, 9, 1090, 1157, 1226, 217, 1370, 1445, 1522, 201, 1682, 1765, 1850, 969, 676, 2117, 2210, 73, 344, 501, 2602, 1353, 2810
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 11 2004

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(1 + Min[e, 2]); a[1] = 2; a[n_] := 1 + Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 01 2024 *)
  • PARI
    a(n) = {my(f = factor(n)); 1 + prod(i = 1, #f~, f[i, 1]^(1 + min(f[i, 2], 2)));} \\ Amiram Eldar, Feb 01 2024

Formula

a(n) = A007947(n)*A007948(n) + 1.
From Amiram Eldar, Feb 01 2024: (Start)
b(n) = a(n) - 1 is multiplicative with b(p^e) = p^(1 + min(e, 2)).
Dirichlet g.f.: zeta(s) * (1 + Product_{p prime} (1 + 1/p^(s-2) - 1/p^s + 1/p^(2*s-3) - 1/p^(2*s-2)).
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = zeta(3) * Product_{p prime} (1 - 1/p^2 - 1/p^4 + 1/p^5) = 0.69256837284462414024... . (End)

A128972 n^3 - 1 divided by its largest cube divisor.

Original entry on oeis.org

7, 26, 63, 124, 215, 342, 511, 91, 37, 1330, 1727, 2196, 2743, 3374, 4095, 614, 17, 254, 7999, 9260, 10647, 12166, 13823, 1953, 17575, 19682, 813, 24388, 26999, 29790, 32767, 4492, 39303, 42874, 46655, 1876, 54871, 59318, 63999, 8615, 74087, 79506
Offset: 2

Views

Author

Jonathan Vos Post, Apr 28 2007

Keywords

Comments

In other words, cubefree part of n^3-1, or cubefree kernel of n^3-1. Cube analog of A068310.

Examples

			a(9) = (9^3-1)/8 = (2^3 * 7 * 13)/(2^3) = 728/8 = 91.
a(10) = (10^3-1)/27 = (3^3 * 37)/(3^3) = 999/27 = 37.
a(18) = (18^3-1)/343 = (7^3 * 17)/(7^3) = 5831/343 = 17.
		

Crossrefs

Programs

  • Maple
    a:= n -> mul(f[1]^(f[2] mod 3), f = ifactors(n^3-1)[2]):
    seq(a(n),n=2..100); # Robert Israel, Sep 24 2014

Formula

a(n) = A062378(A068601(n)) = A062378(n^3-1).

Extensions

More terms from Carl R. White, Nov 09 2010

A343033 Array T(n, k), n, k > 0, read by antidiagonals; a variant of lunar multiplication (A087062) based on prime exponents of numbers (see Comments section for precise definition).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 2, 5, 2, 1, 1, 5, 3, 3, 5, 1, 1, 6, 7, 4, 7, 6, 1, 1, 7, 15, 5, 5, 15, 7, 1, 1, 2, 11, 6, 11, 6, 11, 2, 1, 1, 3, 3, 7, 35, 35, 7, 3, 3, 1, 1, 10, 5, 4, 13, 30, 13, 4, 5, 10, 1, 1, 11, 21, 9, 5, 77, 77, 5, 9, 21, 11, 1
Offset: 1

Views

Author

Rémy Sigrist and N. J. A. Sloane, Apr 03 2021

Keywords

Comments

To compute T(n, k):
- write the prime exponents of n and of k on two lines, right aligned (these lines correspond to rows of A067255 in reversed order),
- to "multiply" two prime numbers: take the smallest,
- to "add" two prime numbers: take the largest,
- for example, for T(12, 14):
(11 7 5 3 2)
12 --> 1 2
14 --> x 1 0 0 1
---------
1 1
0 0
0 0
+ 1 1
-----------
1 1 0 1 1 --> 462 = T(12, 14)
This sequence is closely related to lunar multiplication (A087062):
- for any b > 1, let S_b be the set of nonnegative integers m such that A051903(m)< b,
- there is a natural bijection f from S_b to the set of nonnegative integers:
f(Product_{k >= 0} prime(k)^d(k)) = Sum_{k >= 0} d(k) * b^k,
- let g be the inverse of f,
- then for any numbers n and k in S_b, we have:
T(n, k) = g(f(n) "*" f(k)) where "*" denotes lunar product in base b,
- the corresponding addition table is A003990.

Examples

			Array T(n, k) begins:
  n\k|  1   2   3   4   5    6    7   8   9   10   11   12   13   14
  ----  -  --  --  --  --  ---  ---  --  --  ---  ---  ---  ---  ---
    1|  1   1   1   1   1    1    1   1   1    1    1    1    1    1
    2|  1   2   3   2   5    6    7   2   3   10   11    6   13   14  --> A007947
    3|  1   3   5   3   7   15   11   3   5   21   13   15   17   33  --> A328915
    4|  1   2   3   4   5    6    7   4   9   10   11   12   13   14  --> A007948
    5|  1   5   7   5  11   35   13   5   7   55   17   35   19   65
    6|  1   6  15   6  35   30   77   6  15  210  143   30  221  462
    7|  1   7  11   7  13   77   17   7  11   91   19   77   23  119
    8|  1   2   3   4   5    6    7   8   9   10   11   12   13   14
    9|  1   3   5   9   7   15   11   9  25   21   13   45   17   33
   10|  1  10  21  10  55  210   91  10  21  110  187  210  247  910
   11|  1  11  13  11  17  143   19  11  13  187   23  143   29  209
   12|  1   6  15  12  35   30   77  12  45  210  143   60  221  462
   13|  1  13  17  13  19  221   23  13  17  247   29  221   31  299
   14|  1  14  33  14  65  462  119  14  33  910  209  462  299  238
		

Crossrefs

Programs

  • PARI
    T(n,k) = { my (r=1, pp=factor(n)[,1]~, qq=factor(k)[,1]~); for (i=1, #pp, for (j=1, #qq, my (p=prime(primepi(pp[i])+primepi(qq[j])-1), v=valuation(r, p), w=min(valuation(n, pp[i]), valuation(k, qq[j]))); if (w>v, r*=p^(w-v)))); r }

Formula

T(n, k) = T(k, n).
T(n, 1) = 1.
T(n, 2) = A007947(n).
T(n, 3) = A328915(n).
T(n, 4) = A007948(n).
T(n, n) = A343035(n).
A051903(T(n, k)) = min(A051903(n), A051903(k)).

A360906 Numbers with the same number of cubefree divisors and 3-full divisors.

Original entry on oeis.org

1, 16, 81, 384, 625, 640, 896, 1296, 1408, 1664, 2176, 2401, 2432, 2944, 3712, 3968, 4374, 4736, 5248, 5504, 6016, 6784, 7552, 7808, 8576, 9088, 9216, 9344, 10000, 10112, 10624, 10935, 11392, 12416, 12928, 13184, 13696, 13952, 14464, 14641, 15309, 16256, 16768
Offset: 1

Views

Author

Amiram Eldar, Feb 25 2023

Keywords

Comments

Numbers k such that A073184(k) = A190867(k).
Numbers whose largest cubefree divisor (A007948) and cubefull part (A360540) have the same number of divisors (A000005).
If k and m are coprime terms, then k*m is also a term.
The characteristic function of this sequence depends only on prime signature.
1 is the only cubefree (A004709) term.
Includes the 4th powers of squarefree numbers (1 and A113849).
The 4th powers of primes (A030514) are the only terms that are prime powers (A246655).
Numbers of the for m*p^(3*2^k+1), where m is squarefree, p is prime, gcd(m, p) = 1 and omega(m) = k, are all terms. In particular, this sequence includes numbers of the form p^7*q, where p != q are primes (A179664), and numbers of the form p^13*q*r where p, q, and r are distinct primes.
The corresponding numbers of cubefree (or 3-full) divisors are 1, 3, 3, 6, 3, 6, 6, 9, 6, 6, 6, 3, 6, 6, ... .

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Times @@ (Min[#, 3] & /@ (e + 1)) == Times @@ (Max[#, 1] & /@ (e - 1))]; q[1] = True; Select[Range[10^4], q]
  • PARI
    is(k) = {my(e = factor(k)[,2]); prod(i = 1, #e, min(e[i] + 1, 3)) == prod(i = 1, #e, max(e[i] - 1, 1)); }
Previous Showing 11-20 of 23 results. Next