A260253
Number of symmetry-allowed, linearly-independent terms at n-th order in the expansion of E x (e+a) rovibrational perturbation matrix H(Jx,Jy,Jz).
Original entry on oeis.org
1, 0, 4, 1, 9, 2, 16, 4, 25, 7, 36, 10, 49, 14, 64, 19, 81, 24, 100, 30, 121, 37, 144, 44, 169, 52, 196, 61, 225, 70, 256, 80, 289, 91, 324, 102, 361, 114, 400, 127, 441, 140, 484, 154, 529, 169, 576, 184, 625, 200, 676, 217, 729, 234, 784, 252, 841, 271
Offset: 0
- W. G. Harter, H. W. Galbraith, and C. W. Patterson, Energy level cluster analysis for E(v2) vibration rotation spectrum of spherical top molecules, J. Chem. Phys, 69, 4888 (1978).
- D. A. Sadovskií and B. I. Zhilinskií, Qualitative analysis of vibration-rotation Hamiltonians for spherical top molecules, Molecular Physics 65, 1 (1988).
- N. J. A. Sloane, Error-correcting codes and invariant theory: new applications of a nineteenth-century technique, American Mathematical Monthly (1977): 82-107.
- Richard P. Stanley, Invariants of finite groups and their applications to combinatorics, Bulletin of the American Mathematical Society 1.3 (1979): 475-511.
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1,0,1,0,-2,0,1).
-
D[(1 + 2 x^2 + x^3 + 2 x^4 + x^6 + x^7)/((1 - x^2)^3*(1 + x^2 + x^4)), {x, #}]/#!/.x -> 0 & /@ Range[0, 30]
CoefficientList[Series[(1 + 2 x^2 + x^3 + 2 x^4 + x^6 + x^7)/((1 - x^2)^3 (1 + x^2 + x^4)), {x, 0, 70}], x] (* Vincenzo Librandi, Jul 22 2015 *)
-
Vec((1 + 2 * x^2 + x^3 + 2 * x^4 + x^6 + x^7)/((1 - x^2)^3 *(1 + x^2 + x^4)) + O(x^90)) \\ Michel Marcus, Aug 05 2015
A347026
Irregular triangle read by rows in which row n lists the first n odd numbers, followed by the first n odd numbers in decreasing order.
Original entry on oeis.org
1, 1, 1, 3, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 7, 7, 5, 3, 1, 1, 3, 5, 7, 9, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 11, 11, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 11, 13, 13, 11, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 11, 13, 15, 15, 13, 11, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 11, 13, 15, 17, 17, 15, 13, 11, 9, 7, 5, 3, 1
Offset: 1
Triangle begins:
1, 1;
1, 3, 3, 1;
1, 3, 5, 5, 3, 1;
1, 3, 5, 7, 7, 5, 3, 1;
1, 3, 5, 7, 9, 9, 7, 5, 3, 1;
1, 3, 5, 7, 9, 11, 11, 9, 7, 5, 3, 1;
1, 3, 5, 7, 9, 11, 13, 13, 11, 9, 7, 5, 3, 1;
1, 3, 5, 7, 9, 11, 13, 15, 15, 13, 11, 9, 7, 5, 3, 1;
...
Row lengths give nonzero terms of
A005843.
-
#include
int main()
{
int n, k;
for (n=1; n<=13; n++)
{
for (k=1; k<=n; k++)
{
printf("%d ", 2*k - 1);
}
for (k=n+1; k<=2*n; k++)
{
printf("%d ", 4*n - 2*k + 1);
}
printf("\n");
}
return 0;
}
-
Array[Join[#, Reverse[#]] &@Range[1, 2 # - 1, 2] &, 9] // Flatten (* Michael De Vlieger, Aug 18 2021 *)
Flatten[Table[Join[Range[1,2n+1,2],Range[2n+1,1,-2]],{n,0,10}]] (* Harvey P. Dale, Aug 31 2024 *)
-
row(n) = n*=2; vector(n, k, min(2*k-1, 2*(n-k)+1)); \\ Michel Marcus, Aug 17 2021
A115281
Correlation triangle for the sequence 2-0^n.
Original entry on oeis.org
1, 2, 2, 2, 5, 2, 2, 6, 6, 2, 2, 6, 9, 6, 2, 2, 6, 10, 10, 6, 2, 2, 6, 10, 13, 10, 6, 2, 2, 6, 10, 14, 14, 10, 6, 2, 2, 6, 10, 14, 17, 14, 10, 6, 2, 2, 6, 10, 14, 18, 18, 14, 10, 6, 2, 2, 6, 10, 14, 18, 21, 18, 14, 10, 6, 2
Offset: 0
Triangle begins
1;
2,2;
2,5,2;
2,6,6,2;
2,6,9,6,2;
2,6,10,10,6,2;
-
Flatten[Table[Table[If[n - k + 1 == k, 4*(n - k + 1 - 1) + 1, If[n - k + 1 > k, 4*(k - 1) + 2, 4*(n - k + 1 - 1) + 2]], {k, 1, n}], {n, 1, 11}]] (* Mats Granvik, Jan 06 2016 *)
A308654
The overpartition triangle: T(n,k) is the number of overpartitions of n with exactly k positive integer parts, 0 <= k <= n.
Original entry on oeis.org
1, 0, 2, 0, 2, 2, 0, 2, 4, 2, 0, 2, 6, 4, 2, 0, 2, 8, 8, 4, 2, 0, 2, 10, 14, 8, 4, 2, 0, 2, 12, 20, 16, 8, 4, 2, 0, 2, 14, 28, 26, 16, 8, 4, 2, 0, 2, 16, 38, 40, 28, 16, 8, 4, 2, 0, 2, 18, 48, 60, 46, 28, 16, 8, 4, 2, 0, 2, 20, 60, 84, 72, 48, 28, 16, 8, 4, 2
Offset: 0
T(5,3) = 8 and counts the overpartitions 3,1,1; 3',1,1; 3,1',1; 3',1',1; 2,2,1; 2',2,1; 2,2,1' and 2',2,1'.
T(16,5) = 404 = T(11,5) + 2*( T(11,4) + T(11,3) + T(11,2) + T(11,1)) = 72 + 2*(84 + 60 + 20 + 2) = 404.
T(16, 5) = T(15,4) + T(11,4) + T(10,4) + T(6,4) + T(5,4) = 248 + 84 + 60 + 8 + 4 = 404.
T(9,1) + T(8,2) + T(7,3) + T(6,4) + T(6,5)= 2 + 14 + 20 + 8 + 2 = 46 =A300415(10).
Triangle: T(n,k) begins:
1;
0, 2;
0, 2, 2;
0, 2, 4, 2;
0, 2, 6, 4, 2;
0, 2, 8, 8, 4, 2;
0, 2, 10, 14, 8, 4, 2;
0, 2, 12, 20, 16, 8, 4, 2;
0, 2, 14, 28, 26, 16, 8, 4, 2;
0, 2, 16, 38, 40, 28, 16, 8, 4, 2;
0, 2, 18, 48, 60, 46, 28, 16, 8, 4, 2;
...
Main diagonal T(n,n) gives
A040000.
-
b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
expand(`if`(j>0, 2*x^j, 1)*b(n-i*j, i-1)), j=0..n/i)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
seq(T(n), n=0..14); # Alois P. Heinz, Jun 15 2019
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Expand[If[j > 0, 2*x^j, 1]*b[n - i*j, i - 1]], {j, 0, n/i}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, n]];
T /@ Range[0, 14] // Flatten (* Jean-François Alcover, Dec 10 2019, after Alois P. Heinz *)
A332735
Numbers of graphs which are double triangle descendants of K_5 with four more vertices than triangles.
Original entry on oeis.org
1, 6, 15, 34, 61, 106, 162, 246, 342, 477, 626, 825, 1039, 1314, 1606, 1970, 2352, 2817, 3302, 3881, 4481, 5186, 5914, 6758, 7626, 8621, 9642, 10801, 11987, 13322, 14686, 16210, 17764, 19489, 21246, 23185, 25157, 27322, 29522, 31926, 34366, 37021, 39714, 42633, 45591, 48786
Offset: 9
- Mohamed Laradji, Marni Mishna, and Karen Yeats, Some results on double triangle descendants of K_5, arXiv:1904.06923 [math.CO], 2019.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,2,-2,0,2,-1).
Double triangle descendants of K_5 with three more vertices than triangles is
A007980. Double triangle descendants of K_5 with two more vertices than triangles is
A008619. Double triangle descendants of K_5 with one more vertex than triangles is
A000007. Double triangle descendants of K_5 with the same number of vertices as triangles is
A000012.
A363080
Number of hexagonal lattice points within a hexagram centered at a lattice point and with outermost vertices at the six lattice points n steps outward from the central point.
Original entry on oeis.org
1, 7, 13, 25, 43, 61, 85, 115, 145, 181, 223, 265, 313, 367, 421, 481, 547, 613, 685, 763, 841, 925, 1015, 1105, 1201, 1303, 1405, 1513, 1627, 1741, 1861, 1987, 2113, 2245, 2383, 2521, 2665, 2815, 2965, 3121, 3283, 3445, 3613, 3787, 3961, 4141, 4327, 4513, 4705, 4903, 5101, 5305, 5515, 5725
Offset: 0
Illustration of initial terms:
.
. o o
. o o o o o
. o o o o o o o o
. o o o o o o o o o o o o o o o o
. o o o o o o o o
. o o o o o
. o o
.
. 1 7 13 25
.
-
Table[6*Ceiling[n*(n + 1)/3] + 1, {n, 0, 60}] (* Amiram Eldar, Jul 28 2023 *)
-
a(n) = 6*ceil(n*(n+1)/3) + 1; \\ Michel Marcus, Jun 14 2024
A383338
Square array read by antidiagonals, where the n-th row is the coordination sequence of a certain tiling with an n-dimensional analog of the X pentomino (or Greek cross), n >= 1.
Original entry on oeis.org
1, 2, 1, 2, 4, 1, 2, 8, 8, 1, 2, 12, 26, 14, 1, 2, 16, 56, 76, 20, 1, 2, 20, 98, 244, 150, 28, 1, 2, 24, 152, 578, 632, 296, 38, 1, 2, 28, 218, 1138, 1882, 1680, 558, 48, 1, 2, 32, 296, 1984, 4492, 6424, 4336, 896, 60, 1, 2, 36, 386, 3176, 9230, 18908, 21782, 8688, 1422, 74, 1
Offset: 1
Array begins:
n\k| 0 1 2 3 4 5 6 7 8
---+--------------------------------------------------
1 | 1 2 2 2 2 2 2 2 2
2 | 1 4 8 12 16 20 24 28 32
3 | 1 8 26 56 98 152 218 296 386
4 | 1 14 76 244 578 1138 1984 3176 4774
5 | 1 20 150 632 1882 4492 9230 17040 29042
6 | 1 28 296 1680 6424 18908 46416 99904 194768
7 | 1 38 558 4336 21782 80838 241730 616584 1393906
8 | 1 48 896 8688 52896 232000 803232 2332896 5923776
- Kiran S. Kedlaya, The 80th William Lowell Putnam Mathematical Competition, Dec 7 2019.
- Kiran S. Kedlaya, Solutions to the 80th William Lowell Putnam Mathematical Competition, Dec 7 2019.
- Yusuke Nakamura, Ryotaro Sakamoto, Takafumi Mase, and Junichi Nakagawa, Coordination sequences of crystals are of quasi-polynomial type, Acta Crystallographica A 77 (2021), 138-148.
- Eric Weisstein's World of Mathematics, Greek Cross.
- Index entries for sequences related to coordination sequences.
Comments