cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 70 results. Next

A161696 Number of reduced words of length n in the Weyl group B_3.

Original entry on oeis.org

1, 3, 5, 7, 8, 8, 7, 5, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

If the zeros are ignored, this is the coordination sequence for the truncated cuboctahedron (see the Karzes link). - N. J. A. Sloane, Jan 08 2020
Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=10; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..3]])/(1-t)^3)); // G. C. Greubel, Oct 25 2018
  • Maple
    seq(coeff(series(mul((1-x^(2k))/(1-x),k=1..3),x,n+1), x, n), n = 0 .. 120); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[Product[(1-x^(2*k)), {k,1,3}] /(1-x)^3, {x,0,9}], x] (* G. C. Greubel, Oct 25 2018 *)
  • PARI
    t='t+O('t^10); Vec(prod(k=1,3,1-t^(2*k))/(1-t)^3) \\ G. C. Greubel, Oct 25 2018
    

Formula

G.f. for B_m is the polynomial Prod_{k=1..m}(1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.

A161699 Number of reduced words of length n in the Weyl group B_6.

Original entry on oeis.org

1, 6, 20, 50, 104, 190, 315, 484, 699, 958, 1255, 1580, 1919, 2254, 2565, 2832, 3037, 3166, 3210, 3166, 3037, 2832, 2565, 2254, 1919, 1580, 1255, 958, 699, 484, 315, 190, 104, 50, 20, 6, 1
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..6]])/(1-t)^6)); // G. C. Greubel, Oct 25 2018
  • Maple
    seq(coeff(series(mul((1-x^(2*k))/(1-x),k=1..6),x,n+1), x, n), n = 0 .. 36); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[(1 - x^2) (1 - x^4) (1 - x^6) (1 - x^8) (1 - x^10) (1 - x^12) / (1 - x)^6, {x, 0, 50}], x]  (* Vincenzo Librandi, Aug 22 2016 *)
  • PARI
    t='t+O('t^40); Vec(prod(k=1,6,1-t^(2*k))/(1-t)^6) \\ G. C. Greubel, Oct 25 2018
    

Formula

G.f. for B_m is the polynomial Product_{k=1..m}(1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.

A161716 Number of reduced words of length n in the Weyl group B_7.

Original entry on oeis.org

1, 7, 27, 77, 181, 371, 686, 1170, 1869, 2827, 4082, 5662, 7581, 9835, 12399, 15225, 18242, 21358, 24464, 27440, 30162, 32510, 34376, 35672, 36336, 36336, 35672, 34376, 32510, 30162, 27440, 24464, 21358, 18242, 15225, 12399, 9835, 7581, 5662
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..7]])/(1-t)^7)); // G. C. Greubel, Oct 25 2018
  • Maple
    seq(coeff(series(mul((1-x^(2k))/(1-x),k=1..7),x,n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[(1 - x^2) (1 - x^4) (1 - x^6) (1 - x^8) (1 - x^10) (1 - x^12) (1 - x^14) / (1 - x)^7, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 22 2016 *)
  • PARI
    t='t+O('t^50); Vec(prod(k=1,7,1-t^(2*k))/(1-t)^7) \\ G. C. Greubel, Oct 25 2018
    

Formula

G.f. for B_m is the polynomial Product_{k=1..m} (1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.

A161717 Number of reduced words of length n in the Weyl group B_8.

Original entry on oeis.org

1, 8, 35, 112, 293, 664, 1350, 2520, 4389, 7216, 11298, 16960, 24541, 34376, 46775, 62000, 80241, 101592, 126029, 153392, 183373, 215512, 249202, 283704, 318171, 351680, 383270, 411984, 436913, 457240, 472281, 481520, 484636, 481520, 472281
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..8]])/(1-t)^8)); // G. C. Greubel, Oct 25 2018
  • Maple
    seq(coeff(series(mul((1-x^(2*k))/(1-x),k=1..8),x,65), x, n), n = 0 .. 64); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[(1 - x^2) (1 - x^4) (1 - x^6) (1 - x^8) (1 - x^10) (1 - x^12) (1 - x^14) (1 - x^16) / (1 - x)^8, {x, 0, 70}], x] (* Vincenzo Librandi, Aug 22 2016 *)
  • PARI
    t='t+O('t^40); Vec(prod(k=1,8,1-t^(2*k))/(1-t)^8) \\ G. C. Greubel, Oct 25 2018
    

Formula

G.f. for B_m is the polynomial Product_{k=1..m} (1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.

A161733 Number of reduced words of length n in the Weyl group B_9.

Original entry on oeis.org

1, 9, 44, 156, 449, 1113, 2463, 4983, 9372, 16588, 27886, 44846, 69387, 103763, 150538, 212538, 292779, 394371, 520399, 673783, 857121, 1072521, 1321430, 1604470, 1921291, 2270451, 2649332, 3054100, 3479715, 3919995, 4367735
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..9]])/(1-t)^9)); // G. C. Greubel, Oct 25 2018
  • Maple
    seq(coeff(series(mul((1-x^(2k))/(1-x),k=1..9),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[(1 - x^2) (1 -x^4) (1 - x^6) (1 - x^8) (1 - x^10) (1 - x^12) (1 - x^14) (1 - x^16) (1 - x^18) / (1 - x)^9, {x, 0, 81}], x] (* Vincenzo Librandi, Aug 22 2016 *)
  • PARI
    t='t+O('t^40); Vec(prod(k=1,9,1-t^(2*k))/(1-t)^9) \\ G. C. Greubel, Oct 25 2018
    

Formula

G.f. for B_m is the polynomial Product_{k=1..m} (1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.

A161755 Number of reduced words of length n in the Weyl group B_10.

Original entry on oeis.org

1, 10, 54, 210, 659, 1772, 4235, 9218, 18590, 35178, 63064, 107910, 177297, 281060, 431598, 644136, 936915, 1331286, 1851685, 2525468, 3382588, 4455100, 5776486, 7380800, 9301642, 11570980, 14217849, 17266966, 20737309, 24640716, 28980565
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..10]])/(1-t)^10)); // G. C. Greubel, Oct 25 2018
  • Maple
    seq(coeff(series(mul((1-x^(2*k))/(1-x),k=1..10),x,101), x, n), n = 0 .. 100); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[(1 - x^2) (1 - x^4) (1 - x^6) (1 - x^8) (1 - x^10) (1 - x^12) (1 - x^14) (1 - x^16) (1 - x^18) (1 - x^20) / (1 - x)^10, {x, 0, 100}], x] (* Vincenzo Librandi, Aug 22 2016 *)
  • PARI
    t='t+O('t^40); Vec(prod(k=1,10,1-t^(2*k))/(1-t)^10) \\ G. C. Greubel, Oct 25 2018
    

Formula

G.f. for B_m is the polynomial Product_{k=1..m} (1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.

A161776 Number of reduced words of length n in the Weyl group B_11.

Original entry on oeis.org

1, 11, 65, 275, 934, 2706, 6941, 16159, 34749, 69927, 132991, 240901, 418198, 699258, 1130856, 1774992, 2711907, 4043193, 5894878, 8420346, 11802934, 16258034, 22034519, 29415309, 38716897, 50287667, 64504857, 81770051
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..11]])/(1-t)^11)); // G. C. Greubel, Oct 24 2018
  • Maple
    seq(coeff(series(mul((1-x^(2*k))/(1-x),k=1..11),x,122), x, n), n = 0 .. 121); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[((1 - x^2) (1 - x^4) (1 - x^6) (1 - x^8) (1 - x^10) (1 - x^12) (1 - x^14) (1 - x^16) (1 - x^18) (1 - x^20) (1 - x^22)) / (1 - x)^11, {x, 0, 121}], x] (* Vincenzo Librandi, Aug 22 2016 *)
  • PARI
    t='t+O('t^40); Vec(prod(k=1,11,1-t^(2*k))/(1-t)^11) \\ G. C. Greubel, Oct 24 2018
    

Formula

G.f. for B_m is the polynomial Prod_{k=1..m} (1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.

A161858 Number of reduced words of length n in the Weyl group B_12.

Original entry on oeis.org

1, 12, 77, 352, 1286, 3992, 10933, 27092, 61841, 131768, 264759, 505660, 923858, 1623116, 2753972, 4528964, 7240871, 11284064, 17178942, 25599288, 37402222, 53660256, 75694775, 105110084, 143826980, 194114636, 258619428, 340389204, 442891395, 570023312, 726112969
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

Row n=12 of A128084.
The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..12]])/(1-t)^12)); // G. C. Greubel, Oct 25 2018
  • Maple
    seq(coeff(series(mul((1-x^(2k))/(1-x),k=1..12),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[Product[(1-x^(2*k)),{k,1,12}]/(1-x)^12,{x,0,50}], x] (* G. C. Greubel, Oct 25 2018 *)
  • PARI
    t='t+O('t^50); Vec(prod(k=1,12,1-t^(2*k))/(1-t)^12) \\ G. C. Greubel, Oct 25 2018
    

Formula

G.f. for B_m is the polynomial Product_{k=1..m} (1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.

A267167 Growth series for affine Coxeter group B_4.

Original entry on oeis.org

1, 5, 14, 31, 59, 101, 161, 243, 351, 488, 658, 865, 1112, 1403, 1741, 2130, 2574, 3077, 3643, 4274, 4974, 5747, 6597, 7528, 8543, 9646, 10840, 12129, 13517, 15007, 16603, 18309, 20129, 22066, 24123, 26304, 28613, 31054, 33631, 36347, 39205, 42209, 45363, 48671, 52136, 55762, 59553, 63512, 67643, 71949, 76434, 81102, 85957, 91003, 96242
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-t^2)*(1+t^3)*(1-t^4)*(1-t^8)/((1-t)^5*(1-t^5)*(1 - t^7)))); // G. C. Greubel, Oct 24 2018
  • Maple
    seq(coeff(series((1-x^2)*(1+x^3)*(1-x^4)*(1-x^8)/((1-x)^5*(1-x^5)*(1-x^7)),x,n+1), x, n), n = 0 .. 55); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[(1-t^2)*(1+t^3)*(1-t^4)*(1-t^8)/((1-t)^5*(1-t^5)*(1 - t^7)), {t, 0, 50}], t] (* G. C. Greubel, Oct 24 2018 *)
  • PARI
    t='t+O('t^40); Vec((1-t^2)*(1+t^3)*(1-t^4)*(1-t^8)/((1-t)^5*(1-t^5)*(1 - t^7))) \\ G. C. Greubel, Oct 24 2018
    

Formula

The growth series for the affine Coxeter group of type B_k (k >= 2) has g.f. = Product_i (1-x^{m_i+1})/((1-x)*(1-x^{m_i})) where the m_i are [1,3,5,...,2k-1].
Here (k=4) the G.f. is (1+t+t^2+t^3+t^4+t^5+t^6+t^7)*(t^3+1)*(1+t+t^2+t^3)*(1+t) / (-1+t^7)/(-1+t^5)/(-1+t)^2.
a(n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + 2*a(n-7) - 2*a(n-8) + a(n-9) - a(n-12) + 2*a(n-13) - a(n-14), n > 0. - Muniru A Asiru, Oct 25 2018

A267175 Growth series for affine Coxeter group B_12.

Original entry on oeis.org

1, 13, 90, 443, 1741, 5811, 17109, 45577, 111852, 256282, 553866, 1138110, 2237924, 4233126, 7735923, 13707967, 23625303, 39706809, 65225654, 104927954, 165588279, 256738054, 391610309, 588352779, 871571154, 1274275456, 1840315206, 2627403376, 3710845242, 5188106314, 7184373674, 9859287465, 13415044111, 18106100284, 24250736849
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Formula

The growth series for the affine Coxeter group of type B_k (k >= 2) has g.f. = Product_i (1-x^{m_i+1})/((1-x)*(1-x^{m_i})) where the m_i are [1,3,5,...,2k-1].
Previous Showing 51-60 of 70 results. Next