A137854
Triangle generated from an array: A008277 * A008277(transform).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 11, 8, 1, 1, 16, 28, 28, 16, 1, 1, 32, 71, 87, 71, 32, 1, 1, 64, 184, 266, 266, 184, 64, 1, 1, 128, 491, 823, 952, 823, 491, 128, 1, 1, 256, 1348, 2598, 3381, 381, 2598, 1348, 2561
Offset: 1
First few rows of the array:
1, 1, 1, 1, 1, 1, ...
1, 2, 4, 8, 16, 32, ...
1, 4, 11, 28, 71, 184, ...
1, 8, 28, 87, 266, 823, ...
1, 16, 71, 266, 952, 3381, ...
...
First few rows of the triangle:
1;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 8, 11, 8, 1;
1, 16, 28, 28, 16, 1;
1, 32, 71, 87, 71, 32, 1;
1, 64, 184, 266, 266, 184, 64, 1;
1, 128, 491, 823, 952, 823, 491, 128, 1;
...
A154959
Triangle read by rows. Signed version of A008277.
Original entry on oeis.org
1, -1, 1, -1, -3, 1, -1, -7, -6, 1, -1, -15, -25, -10, 1, -1, -31, -90, -65, -15, 1, -1, -63, -301, -350, -140, -21, 1, -1, -127, -966, -1701, -1050, -266, -28, 1, -1, -255, -3025, -7770, -6951, -2646, -462, -36, 1
Offset: 1
A223512
Triangle T(n,k) represents the coefficients of (x^10*d/dx)^n, where n=1,2,3,...;generalization of Stirling numbers of second kind A008277, Lah-numbers A008297.
Original entry on oeis.org
1, 10, 1, 190, 30, 1, 5320, 1060, 60, 1, 196840, 45600, 3400, 100, 1, 9054640, 2340040, 208800, 8300, 150, 1, 498005200, 140096880, 14241640, 690200, 17150, 210, 1, 31872332800, 9604302400, 1080045120, 60485040, 1856400, 31640, 280, 1, 2326680294400
Offset: 1
1;
10,1;
190,30,1;
5320,1060,60,1;
196840,45600,3400,100,1;
9054640,2340040,208800,8300,150,1;
498005200,140096880,14241640,690200,17150,210,1;
31872332800,9604302400,1080045120,60485040,1856400,31640,280,1,2326680294400
Cf.
A008277,
A019538,
A035342,
A035469,
A049029,
A049385,
A092082,
A132056,
A223511-
A223522,
A223168-
A223172,
A223523-
A223532.
A381160
a(n) is the permanent of the n X n matrix whose element (i,j) is equal to A008277(i+3, j) with 1 <= i,j <= n.
Original entry on oeis.org
1, 1, 22, 3206, 1902936, 3504528354, 16660734321540, 179059038168086056, 3938830136216956996632, 164125096331945477980176920, 12173562237817299484378342192768, 1527294306324982018922212102518520032, 310564445230567070838152555220146533261496, 98712056006032672983172826864304778359411112064
Offset: 0
a(3) = 3206:
[1, 7, 6]
[1, 15, 25]
[1, 31, 90]
-
a[n_]:=Permanent[Table[StirlingS2[i+3,j],{i,n},{j,n}]]; Join[{1},Array[a,13]]
-
a(n) = matpermanent(matrix(n, n, i, j, stirling(i+3,j,2))); \\ Michel Marcus, Feb 16 2025
A381166
a(n) is the permanent of the n X n matrix whose element (i,j) is equal to A008277(i+4, j) with 1 <= i,j <= n.
Original entry on oeis.org
1, 1, 46, 23216, 70437736, 911400637082, 39931366088759328, 5015203546888139970264, 1592320463242701429692077472, 1158339311156769223634640734447744, 1783702957209729441902140461938160455424, 5447268928199100257603373050876725987854119216, 31237114830378466799129128930824084710690680271414364
Offset: 0
a(3) = 23216:
[1, 15, 25]
[1, 31, 90]
[1, 63, 301]
-
a[n_]:=Permanent[Table[StirlingS2[i+4, j], {i, n}, {j, n}]]; Join[{1}, Array[a, 12]]
-
a(n) = matpermanent(matrix(n, n, i, j, stirling(i+4,j,2))); \\ Michel Marcus, Feb 16 2025
A166280
Stirling2 triangle mod 2, T(n,k) = A008277(n,k) mod 2.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1
Offset: 0
Triangle begins:
1,
1,1,
1,1,1,
1,1,0,1,
1,1,1,0,1,
1,1,0,1,1,1,
1,1,1,0,0,1,1,
1,1,0,1,0,0,0,1,
1,1,1,0,1,0,0,0,1,
1,1,0,1,1,1,0,0,1,1,
1,1,1,0,0,1,1,0,1,1,1,
1,1,0,1,0,0,0,1,1,1,0,1,
1,1,1,0,1,0,0,0,0,1,1,0,1,
...
Cf.
A008277,
A047999 (Sierpinski's triangle, Pascal's triangle mod 2).
-
p = 2; s=14; S2T = matrix(s,s,n,k, if(k==1,1)); for(n=2,s,for(k=2,n, S2T[n,k]=k*S2T[n-1,k]+S2T[n-1,k-1]));
S2TMP = matrix(s,s,n,k, S2T[n,k]%p);
for(n=1,s,for(k=1,n,print1(S2TMP[n,k]," "));print())
A187556
Triangle read by rows of products of (signless) Stirling numbers of the first kind (A132393) and Stirling numbers of the second kind (A008277).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 9, 1, 0, 6, 77, 36, 1, 0, 24, 750, 875, 100, 1, 0, 120, 8494, 20250, 5525, 225, 1, 0, 720, 111132, 488824, 257250, 24500, 441, 1, 0, 5040, 1659636, 12685512, 11514069, 2058000, 85652, 784, 1, 0, 40320, 27943920, 357325100, 522796680, 156042999, 12002256, 252252, 1296, 1, 0, 362880, 524580336, 10941291000, 24681106400, 11453045625, 1444332771, 55566000, 652500, 2025, 1
Offset: 0
Triangle begins:
1
0,1
0,1,1
0,2,9,1
0,6,77,36,1
0,24,750,875,100,1
0,120,8494,20250,5525,225,1
0,720,111132,488824,257250,24500,441,1
0,5040,1659636,12685512,11514069,2058000,85652,784,1
-
seq(seq(abs(combinat[stirling1](n,k))*combinat[stirling2](n,k),k=0..n),n=0..8);
-
Flatten[Table[Table[Abs[StirlingS1[n, k]]*StirlingS2[n, k], {k, 0, n}],{n, 0, 8}] ,1]
-
create_list(abs(stirling1(n,k)*stirling2(n,k)),n,0,10,k,0,n);
A187557
Triangle read by rows of products of Stirling numbers of the second kind (A008277): a(n,k) = S(n,k) S(n+1,k+1).
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 7, 18, 1, 0, 15, 175, 60, 1, 0, 31, 1350, 1625, 150, 1, 0, 63, 9331, 31500, 9100, 315, 1, 0, 127, 60858, 512001, 367500, 37240, 588, 1, 0, 255, 384175, 7505820, 11823651, 2778300, 122892, 1008, 1, 0, 511, 2379150, 103167625, 330419250, 158670477, 15558480, 346500, 1620, 1, 0, 1023, 14564011, 1359847500, 8414726650, 7632684675, 1460631249, 69854400, 866250, 2475, 1
Offset: 0
Triangle begins:
1
0,1
0,3,1
0,7,18,1
0,15,175,60,1
0,31,1350,1625,150,1
0,63,9331,31500,9100,315,1
0,127,60858,512001,367500,37240,588,1
0,255,384175,7505820,11823651,2778300,122892,1008,1
-
seq(seq(combinat[stirling2](n,k)*combinat[stirling2](n+1,k+1),k=0..n),n=0..8);
-
Table[StirlingS2[n, k]StirlingS2[n + 1, k + 1], {n, 0, 8}, {k, 0, 8}]//MatrixForm
-
create_list(stirling2(n,k)*stirling2(n+1,k+1),n,0,10,k,0,n);
A223514
Triangle T(n,k) represents the coefficients of (x^12*d/dx)^n, where n=1,2,3,...; generalization of Stirling numbers of second kind A008277, Lah-numbers A008297.
Original entry on oeis.org
1, 12, 1, 276, 36, 1, 9384, 1536, 72, 1, 422280, 80040, 4920, 120, 1, 23647680, 4984560, 365400, 12000, 180, 1, 1584394560, 362597760, 30197160, 1205400, 24780, 252, 1, 123582775680, 30229617600, 2778370560, 127834560, 3237360, 45696, 336, 1, 1099867035520
Offset: 1
1;
12,1;
276,36,1;
9384,1536,72,1;
422280,80040,4920,120,1;
23647680,4984560,365400,12000,180,1;
1584394560,362597760,30197160,1205400,24780,252,1;
123582775680,30229617600,2778370560,127834560,3237360,45696,336,1;
1099867035520,...
Cf.
A008277,
A019538,
A035342,
A035469,
A049029,
A049385,
A092082,
A132056,
A223511-
A223522,
A223168-
A223172,
A223523-
A223532.
A223515
Triangle T(n,k) represents the coefficients of (x^13*d/dx)^n, where n=1,2,3,...; generalization of Stirling numbers of second kind A008277, Lah-numbers A008297.
Original entry on oeis.org
1, 13, 1, 325, 39, 1, 12025, 1807, 78, 1, 589225, 102375, 5785, 130, 1, 35942725, 6936475, 466830, 14105, 195, 1, 2623818925, 549241875, 41948725, 1538810, 29120, 273, 1, 223024608625, 49858620175, 4198780950, 177364005, 4130490, 53690, 364, 1, 21633387036625
Offset: 1
1;
13,1;
325,39,1;
12025,1807,78,1;
589225,102375,5785,130,1;
35942725,6936475,466830,14105,195,1
2623818925,549241875,41948725,1538810,29120,273,1;
223024608625,49858620175,4198780950,177364005,4130490,53690,364,1;
21633387036625,...
Cf.
A008277,
A019538,
A035342,
A035469,
A049029,
A049385,
A092082,
A132056,
A223511-
A223522,
A223168-
A223172,
A223523-
A223532.
Comments