Original entry on oeis.org
1, 2, 3, 5, 10, 26, 87, 359, 1744, 9680, 60201, 413993, 3116758, 25485014, 224845995, 2128603307, 21520115452, 231385458428, 2636265133869, 31725150246701, 402096338484226, 5353594391608322, 74702468784746223, 1090126355291598575, 16604660518848685480
Offset: 0
a(22) = 1 + 1 + 1 + 2 + 5 + 16 + 61 + 272 + 1385 + 7936 + 50521 + 353792 + 2702765 + 22368256 + 199360981 + 1903757312 + 19391512145 + 209865342976 + 2404879675441 + 29088885112832 + 370371188237525 + 4951498053124096 + 69348874393137901.
Cf.
A000111,
A000364,
A000182,
A008280,
A008281,
A008282,
A010094,
A059720,
A008970,
A109449,
A162170.
-
b:= proc(u, o) option remember;
`if`(u+o=0, 1, add(b(o-1+j, u-j), j=1..u))
end:
a:= proc(n) option remember;
`if`(n<0, 0, a(n-1))+ b(n, 0)
end:
seq(a(n), n=0..25); # Alois P. Heinz, Oct 27 2017
-
With[{nn=30},Accumulate[CoefficientList[Series[Sec[x]+Tan[x],{x,0,nn}],x] Range[0,nn]!]] (* Harvey P. Dale, Feb 26 2012 *)
-
from itertools import accumulate
def A173253(n):
if n<=1:
return n+1
c, blist = 2, (0,1)
for _ in range(n-1):
c += (blist := tuple(accumulate(reversed(blist),initial=0)))[-1]
return c # Chai Wah Wu, Apr 16 2023
A236934
Triangle of Poupard numbers g_n(k) read by rows, n>=1, 1<=k<=2n-1.
Original entry on oeis.org
1, 0, 2, 0, 0, 4, 8, 4, 0, 0, 32, 64, 80, 64, 32, 0, 0, 544, 1088, 1504, 1664, 1504, 1088, 544, 0, 0, 15872, 31744, 45440, 54784, 58112, 54784, 45440, 31744, 15872, 0, 0, 707584, 1415168, 2059264, 2576384, 2911744, 3027968, 2911744, 2576384, 2059264, 1415168, 707584, 0
Offset: 1
Triangle begins:
1,
0, 2, 0,
0, 4, 8, 4, 0,
0, 32, 64, 80, 64, 32, 0,
0, 544, 1088, 1504, 1664, 1504, 1088, 544, 0,
...
- Peter Luschny, Row(n) for n = 1..25
- Dominique Foata and Guo-Niu Han, Seidel Triangle Sequences and Bi-Entringer Numbers, November 20, 2013.
- Foata, Dominique; Han, Guo-Niu; Strehl, Volker The Entringer-Poupard matrix sequence. Linear Algebra Appl. 512, 71-96 (2017).
- Christiane Poupard, Deux propriétés des arbres binaires ordonnés stricts, Europ. J. Combin., vol. 10, 1989, p. 369-374.
-
T := proc(n,k) option remember; local j;
if n = 1 then 1
elif k = 1 then 0
elif k = 2 then 2*add(T(n-1, j), j=1..2*n-3)
elif k > n then T(n, 2*n-k)
else 2*T(n, k-1)-T(n, k-2)-4*T(n-1, k-2)
fi end:
seq(print(seq(T(n,k), k=1..2*n-1)), n=1..6); # Peter Luschny, May 11 2014
-
T[n_, k_] /; 1 <= k <= 2n-1 := T[n, k] = Which[n == 1, 1, k == 1, 0, k == 2, 2 Sum[T[n-1, j], {j, 1, 2n-3}], k > n, T[n, 2n-k], True, 2 T[n, k-1] - T[n, k-2] - 4 T[n-1, k-2]]; T[, ] = 0;
Table[T[n, k], {n, 1, 7}, {k, 1, 2n-1}] // Flatten (* Jean-François Alcover, Jul 08 2019, from Maple *)
A278982
List of Andre permutations of the first kind.
Original entry on oeis.org
1, 12, 123, 213, 1234, 1324, 2134, 2314, 3124, 12345, 12435, 13245, 13425, 14235, 21345, 21435, 23145, 23415, 24135, 31245, 31425, 32415, 34125, 41235, 41325, 123456, 123546, 124356, 124536, 125346, 132456, 132546, 134256, 134526, 135246, 142356, 142536
Offset: 1
A278983
List of Andre permutations of the second kind.
Original entry on oeis.org
1, 12, 123, 312, 1234, 1423, 3124, 3412, 4123, 12345, 12534, 14235, 14523, 15234, 31245, 31524, 34125, 34512, 35124, 41235, 41523, 45123, 51234, 51423, 53412, 123456, 123645, 125346, 125634, 126345, 142356, 142635, 145236, 145623, 146235, 152346, 152634
Offset: 1
A006213
Number of down-up permutations of n+4 starting with n+1.
Original entry on oeis.org
0, 2, 10, 46, 224, 1202, 7120, 46366, 329984, 2551202, 21306880, 191252686, 1836652544, 18793429202, 204154071040, 2346705139006, 28459289083904, 363156549211202, 4864231397785600, 68237760828425326, 1000569392347480064, 15306487540377673202
Offset: 0
a(1) = 2 because we have 21435 and 21534.
- R. C. Entringer, A combinatorial interpretation of the Euler and Bernoulli numbers, Nieuw Archief voor Wiskunde, 14 (1966), 241-246.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- B. Bauslaugh and F. Ruskey, Generating alternating permutations lexicographically, Nordisk Tidskr. Informationsbehandling (BIT) 30 (1990), 16-26.
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996), 44-54 (Abstract, pdf, ps).
- C. Poupard, De nouvelles significations énumeratives des nombres d'Entringer, Discrete Math., 38 (1982), 265-271.
-
f:=sec(x)+tan(x): fser:=series(f,x=0,30): E[0]:=1: for n from 1 to 25 do E[n]:=n!*coeff(fser,x^n) od: a:=n->sum((-1)^i*binomial(n,2*i+1)*E[n+2-2*i],i=0..1+floor((n+1)/2)): seq(a(n),n=0..17);
# Alternatively after Alois P. Heinz in A000111:
b := proc(u, o) option remember;
`if`(u + o = 0, 1, add(b(o - 1 + j, u - j), j = 1..u)) end:
a := n -> b(n, 3): seq(a(n), n = 0..21); # Peter Luschny, Oct 27 2017
-
t[n_, 0] := If[n == 0, 1, 0]; t[n_ , k_ ] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n + 3, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
A006215
Number of down-up permutations of n+6 starting with n+1.
Original entry on oeis.org
0, 16, 122, 800, 5296, 36976, 275792, 2204480, 18870016, 172585936, 1681843712, 17411416160, 190939611136, 2211961358896, 26999750469632, 346419349043840, 4661658528710656, 65657186909139856, 966054350401175552, 14822897275566895520
Offset: 0
a(1)=16 because we have 2143657, 2143756, 2153647, 2153746, 2154637, 2154736, 2163547, 2163745, 2164537, 2164735, 2165734, 2173546, 2173645, 2174536, 2174635 and 2175634.
- R. C. Entringer, A combinatorial interpretation of the Euler and Bernoulli numbers, Nieuw Archief voor Wiskunde, 14 (1966), 241-246.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- B. Bauslaugh and F. Ruskey, Generating alternating permutations lexicographically, Nordisk Tidskr. Informationsbehandling (BIT) 30 16-26 1990.
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996) 44-54 (Abstract, pdf, ps).
- C. Poupard, De nouvelles significations énumeratives des nombres d'Entringer, Discrete Math., 38 (1982), 265-271.
- Index entries for sequences related to tournaments
-
f:=sec(x)+tan(x): fser:=series(f,x=0,30): E[0]:=1: for n from 1 to 25 do E[n]:=n!*coeff(fser,x^n) od: a:=n->sum((-1)^i*binomial(n,2*i+1)*E[n+4-2*i],i=0..floor((n-1)/2)): seq(a(n),n=0..15);
# Alternatively after Alois P. Heinz in A000111:
b := proc(u, o) option remember;
`if`(u + o = 0, 1, add(b(o - 1 + j, u - j), j = 1..u)) end:
a := n -> b(n, 5): seq(a(n), n = 0..21); # Peter Luschny, Oct 27 2017
-
t[n_, 0] := If[n == 0, 1, 0]; t[n_ , k_ ] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n + 5, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
A006216
Number of down-up permutations of n+4 starting with 4.
Original entry on oeis.org
2, 5, 14, 46, 178, 800, 4094, 23536, 150178, 1053440, 8057774, 66750976, 595380178, 5688903680, 57975175454, 627692271616, 7195247514178, 87056789995520, 1108708685037134, 14825405274259456, 207676251991176178
Offset: 0
a(1) = 5 because we have 41325, 41523, 42314, 42513 and 43512.
- R. C. Entringer, A combinatorial interpretation of the Euler and Bernoulli numbers, Nieuw Archief voor Wiskunde, 14 (1966), 241-246.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- B. Bauslaugh and F. Ruskey, Generating alternating permutations lexicographically, Nordisk Tidskr. Informationsbehandling (BIT) 30 (1990) 16-26.
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996) 44-54 (Abstract, pdf, ps).
- C. Poupard, De nouvelles significations énumeratives des nombres d'Entringer, Discrete Math., 38 (1982), 265-271.
-
f:=sec(x)+tan(x): fser:=series(f,x=0,30): E[0]:=1: for n from 1 to 25 do E[n]:=n!*coeff(fser,x^n) od: seq(3*E[n+2]-E[n],n=0..20);
-
e[0] = e[1] = 1; e[n_] := 2*Sum[ 4^m*Sum[ (i-(n-1)/2)^(n-1)*Binomial[ n-2*m-1, i-m]*(-1)^(n-i-1), {i, m, (n-1)/ 2}], {m, 0, (n-2)/2}]; a[0]=2; a[n_] := 3e[n+2] - e[n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jan 27 2012, after Emeric Deutsch *)
-
{a(n) = local(v=[1], t); if( n<0, 0, for(k=2, n+4, t=0; v = vector(k, i, if( i>1, t += v[k+1-i]))); v[4])}; /* Michael Somos, Feb 03 2004 */
A006217
Number of down-up permutations of n+5 starting with 5.
Original entry on oeis.org
5, 16, 56, 224, 1024, 5296, 30656, 196544, 1383424, 10608976, 88057856, 786632864, 7525556224, 76768604656, 831846342656, 9541952653184, 115516079079424, 1471865234248336, 19689636672045056, 275914012819601504
Offset: 0
a(0)=5 because we have 51324, 51423, 52314, 52413 and 53412.
- R. C. Entringer, A combinatorial interpretation of the Euler and Bernoulli numbers, Nieuw Archief voor Wiskunde, 14 (1966), 241-246.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- B. Bauslaugh and F. Ruskey, Generating alternating permutations lexicographically, Nordisk Tidskr. Informationsbehandling (BIT) 30 (1990), 16-26.
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996), 44-54 (Abstract, pdf, ps).
- C. Poupard, De nouvelles significations énumeratives des nombres d'Entringer, Discrete Math., 38 (1982), 265-271.
-
f:=sec(x)+tan(x): fser:=series(f,x=0,35): E[0]:=1: for n from 1 to 40 do E[n]:=n!*coeff(fser,x^n) od: 5, seq(4*E[n-1]-4*E[n-3],n=5..23);
-
{a(n) = local(v=[1], t); if( n<0, 0, for(k=2, n+5, t=0; v = vector(k, i, if( i>1, t += v[k+1-i]))); v[5])}; /* Michael Somos, Feb 03 2004 */
A006214
Number of down-up permutations of n+5 starting with n+1.
Original entry on oeis.org
0, 5, 32, 178, 1024, 6320, 42272, 306448, 2401024, 20253440, 183194912, 1769901568, 18198049024, 198465167360, 2288729963552, 27831596812288, 355961301697024, 4777174607790080, 67129052143388192, 985743987073220608, 15098811288386497024, 240833888369219993600
Offset: 0
a(1)=5 because we have 214365, 215364, 215463, 216354 and 216453.
- R. C. Entringer, A combinatorial interpretation of the Euler and Bernoulli numbers, Nieuw Archief voor Wiskunde, 14 (1966), 241-246.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- B. Bauslaugh and F. Ruskey, Generating alternating permutations lexicographically, Nordisk Tidskr. Informationsbehandling (BIT) 30 (1990), 16-26.
- C. Poupard, De nouvelles significations énumeratives des nombres d'Entringer, Discrete Math., 38 (1982), 265-271.
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996) 44-54 (Abstract, pdf, ps).
-
f:=sec(x)+tan(x): fser:=series(f,x=0,30): E[0]:=1: for n from 1 to 25 do E[n]:=n!*coeff(fser,x^n) od: a:=n->sum((-1)^i*binomial(n,2*i+1)*E[n+3-2*i],i=0..floor((n-1)/2)): seq(a(n),n=0..16);
# Alternatively after Alois P. Heinz in A000111:
b := proc(u, o) option remember;
`if`(u + o = 0, 1, add(b(o - 1 + j, u - j), j = 1..u)) end:
a := n -> b(n, 4): seq(a(n), n = 0..21); # Peter Luschny, Oct 27 2017
-
t[n_, 0] := If[n == 0, 1, 0]; t[n_ , k_ ] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n + 4, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
A008283
Read across rows of Euler-Bernoulli or Entringer triangle.
Original entry on oeis.org
1, 2, 4, 5, 10, 14, 16, 32, 46, 56, 61, 122, 178, 224, 256, 272, 544, 800, 1024, 1202, 1324, 1385, 2770, 4094, 5296, 6320, 7120, 7664, 7936, 15872, 23536, 30656, 36976, 42272, 46366, 49136, 50521, 101042, 150178, 196544, 238816, 275792, 306448, 329984, 345856
Offset: 3
This is a sub-triangle of A008282, starting in row 3 of A008282 and then proceeding as a regular triangle.
[ 3] 1
[ 4] 2, 4
[ 5] 5, 10, 14
[ 6] 16, 32, 46, 56
[ 7] 61, 122, 178, 224, 256
[ 8] 272, 544, 800, 1024, 1202, 1324
[ 9] 1385, 2770, 4094, 5296, 6320, 7120, 7664
[10] 7936, 15872, 23536, 30656, 36976, 42272, 46366, 49136
[11] 50521, 101042, 150178, 196544, 238816, 275792, 306448, 329984, 345856
- V. I. Arnold, The calculus of snakes and the combinatorics of Bernoulli, Euler and Springer numbers of Coxeter groups, Uspekhi Mat. nauk., 47 (#1, 1992), 3-45 = Russian Math. Surveys, Vol. 47 (1992), 1-51. English version.
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996) 44-54 (Abstract, pdf, ps).
- C. Poupard, De nouvelles significations énumeratives des nombres d'Entringer, Discrete Math., 38 (1982), 265-271.
-
T := proc(n, k) option remember; if k = 0 then `if`(n = 0, 1, 0) else
T(n, k - 1) + T(n - 1, n - k) fi end:
seq(seq(T(n, k-2), k = 3..n), n = 3..11); # Peter Luschny, Feb 17 2021
-
T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0],
T[n, k - 1] + T[n - 1, n - k]];
Table[Table[T[n, k - 2], {k, 3, n}], {n, 3, 11}] // Flatten (* after Peter Luschny *)
Comments