cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A173253 Partial sums of A000111.

Original entry on oeis.org

1, 2, 3, 5, 10, 26, 87, 359, 1744, 9680, 60201, 413993, 3116758, 25485014, 224845995, 2128603307, 21520115452, 231385458428, 2636265133869, 31725150246701, 402096338484226, 5353594391608322, 74702468784746223, 1090126355291598575, 16604660518848685480
Offset: 0

Views

Author

Jonathan Vos Post, Feb 14 2010

Keywords

Comments

Partial sums of Euler or up/down numbers. Partial sums of expansion of sec x + tan x. Partial sums of number of alternating permutations on n letters.

Examples

			a(22) = 1 + 1 + 1 + 2 + 5 + 16 + 61 + 272 + 1385 + 7936 + 50521 + 353792 + 2702765 + 22368256 + 199360981 + 1903757312 + 19391512145 + 209865342976 + 2404879675441 + 29088885112832 + 370371188237525 + 4951498053124096 + 69348874393137901.
		

Crossrefs

Programs

  • Maple
    b:= proc(u, o) option remember;
          `if`(u+o=0, 1, add(b(o-1+j, u-j), j=1..u))
        end:
    a:= proc(n) option remember;
          `if`(n<0, 0, a(n-1))+ b(n, 0)
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 27 2017
  • Mathematica
    With[{nn=30},Accumulate[CoefficientList[Series[Sec[x]+Tan[x],{x,0,nn}],x] Range[0,nn]!]] (* Harvey P. Dale, Feb 26 2012 *)
  • Python
    from itertools import accumulate
    def A173253(n):
        if n<=1:
            return n+1
        c, blist = 2, (0,1)
        for _ in range(n-1):
            c += (blist := tuple(accumulate(reversed(blist),initial=0)))[-1]
        return c # Chai Wah Wu, Apr 16 2023

Formula

a(n) = SUM[i=0..n] A000111(i) = SUM[i=0..n] (2^i|E(i,1/2)+E(i,1)| where E(n,x) are the Euler polynomials).
G.f.: (1 + x/Q(0))/(1-x),m=+4,u=x/2, where Q(k) = 1 - 2*u*(2*k+1) - m*u^2*(k+1)*(2*k+1)/( 1 - 2*u*(2*k+2) - m*u^2*(k+1)*(2*k+3)/Q(k+1) ) ; (continued fraction). - Sergei N. Gladkovskii, Sep 24 2013
G.f.: 1/(1-x) + T(0)*x/(1-x)^2, where T(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - 2*(1-x*(k+1))*(1-x*(k+2))/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 20 2013
a(n) ~ 2^(n+2)*n!/Pi^(n+1). - Vaclav Kotesovec, Oct 27 2016

A236934 Triangle of Poupard numbers g_n(k) read by rows, n>=1, 1<=k<=2n-1.

Original entry on oeis.org

1, 0, 2, 0, 0, 4, 8, 4, 0, 0, 32, 64, 80, 64, 32, 0, 0, 544, 1088, 1504, 1664, 1504, 1088, 544, 0, 0, 15872, 31744, 45440, 54784, 58112, 54784, 45440, 31744, 15872, 0, 0, 707584, 1415168, 2059264, 2576384, 2911744, 3027968, 2911744, 2576384, 2059264, 1415168, 707584, 0
Offset: 1

Views

Author

N. J. A. Sloane, Feb 17 2014

Keywords

Examples

			Triangle begins:
1,
0, 2, 0,
0, 4, 8, 4, 0,
0, 32, 64, 80, 64, 32, 0,
0, 544, 1088, 1504, 1664, 1504, 1088, 544, 0,
...
		

Crossrefs

Cf. A000182 (row sums), A008282, A125053.

Programs

  • Maple
    T := proc(n,k) option remember; local j;
      if n = 1 then 1
    elif k = 1 then 0
    elif k = 2 then 2*add(T(n-1, j), j=1..2*n-3)
    elif k > n then T(n, 2*n-k)
    else 2*T(n, k-1)-T(n, k-2)-4*T(n-1, k-2)
      fi end:
    seq(print(seq(T(n,k), k=1..2*n-1)), n=1..6); # Peter Luschny, May 11 2014
  • Mathematica
    T[n_, k_] /; 1 <= k <= 2n-1 := T[n, k] = Which[n == 1, 1, k == 1, 0, k == 2, 2 Sum[T[n-1, j], {j, 1, 2n-3}], k > n, T[n, 2n-k], True, 2 T[n, k-1] - T[n, k-2] - 4 T[n-1, k-2]]; T[, ] = 0;
    Table[T[n, k], {n, 1, 7}, {k, 1, 2n-1}] // Flatten (* Jean-François Alcover, Jul 08 2019, from Maple *)

Formula

4^(-n)*sum(k=1..2*n+1, binomial(2*n,k-1)*T(n+1,k)) = A000364(n), n>=0. - Peter Luschny, May 11 2014
(-1)^n*sum(k=1..2*n+1, (-1)^(k-1)*binomial(2*n,k-1)*T(n+1,k)) = A000302(n), n>=0. - Peter Luschny, May 11 2014

Extensions

More terms from Peter Luschny, May 11 2014

A278982 List of Andre permutations of the first kind.

Original entry on oeis.org

1, 12, 123, 213, 1234, 1324, 2134, 2314, 3124, 12345, 12435, 13245, 13425, 14235, 21345, 21435, 23145, 23415, 24135, 31245, 31425, 32415, 34125, 41235, 41325, 123456, 123546, 124356, 124536, 125346, 132456, 132546, 134256, 134526, 135246, 142356, 142536
Offset: 1

Views

Author

N. J. A. Sloane, Dec 03 2016

Keywords

Comments

The permutations are encoded in decimal, hence the keyword base. - Rémy Sigrist, May 13 2021

Crossrefs

Programs

  • PARI
    See Links section.

Extensions

More terms from Rémy Sigrist, May 13 2021

A278983 List of Andre permutations of the second kind.

Original entry on oeis.org

1, 12, 123, 312, 1234, 1423, 3124, 3412, 4123, 12345, 12534, 14235, 14523, 15234, 31245, 31524, 34125, 34512, 35124, 41235, 41523, 45123, 51234, 51423, 53412, 123456, 123645, 125346, 125634, 126345, 142356, 142635, 145236, 145623, 146235, 152346, 152634
Offset: 1

Views

Author

N. J. A. Sloane, Dec 03 2016

Keywords

Comments

The permutations are encoded in decimal, hence the keyword base. - Rémy Sigrist, May 13 2021

Crossrefs

Programs

  • PARI
    See Links section.

Extensions

More terms from Rémy Sigrist, May 13 2021

A006213 Number of down-up permutations of n+4 starting with n+1.

Original entry on oeis.org

0, 2, 10, 46, 224, 1202, 7120, 46366, 329984, 2551202, 21306880, 191252686, 1836652544, 18793429202, 204154071040, 2346705139006, 28459289083904, 363156549211202, 4864231397785600, 68237760828425326, 1000569392347480064, 15306487540377673202
Offset: 0

Views

Author

Keywords

Comments

Entringer numbers.

Examples

			a(1) = 2 because we have 21435 and 21534.
		

References

  • R. C. Entringer, A combinatorial interpretation of the Euler and Bernoulli numbers, Nieuw Archief voor Wiskunde, 14 (1966), 241-246.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=4 of A010094.

Programs

  • Maple
    f:=sec(x)+tan(x): fser:=series(f,x=0,30): E[0]:=1: for n from 1 to 25 do E[n]:=n!*coeff(fser,x^n) od: a:=n->sum((-1)^i*binomial(n,2*i+1)*E[n+2-2*i],i=0..1+floor((n+1)/2)): seq(a(n),n=0..17);
    # Alternatively after Alois P. Heinz in A000111:
    b := proc(u, o) option remember;
    `if`(u + o = 0, 1, add(b(o - 1 + j, u - j), j = 1..u)) end:
    a := n -> b(n, 3): seq(a(n), n = 0..21); # Peter Luschny, Oct 27 2017
  • Mathematica
    t[n_, 0] := If[n == 0, 1, 0]; t[n_ , k_ ] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n + 3, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)

Formula

From Emeric Deutsch, May 15 2004: (Start)
a(n) = Sum_{i=0..1+floor((n+1)/2)} (-1)^i * binomial(n, 2*i+1) * E[n+2-2i], where E[j] = A000111(j) = j!*[x^j](sec(x) + tan(x)) are the up/down or Euler numbers.
a(n) = T(n+3, n), where T is the triangle in A008282. (End)

Extensions

More terms from Jean-François Alcover, Feb 12 2016

A006215 Number of down-up permutations of n+6 starting with n+1.

Original entry on oeis.org

0, 16, 122, 800, 5296, 36976, 275792, 2204480, 18870016, 172585936, 1681843712, 17411416160, 190939611136, 2211961358896, 26999750469632, 346419349043840, 4661658528710656, 65657186909139856, 966054350401175552, 14822897275566895520
Offset: 0

Views

Author

Keywords

Comments

Entringer numbers.

Examples

			a(1)=16 because we have 2143657, 2143756, 2153647, 2153746, 2154637, 2154736, 2163547, 2163745, 2164537, 2164735, 2165734, 2173546, 2173645, 2174536, 2174635 and 2175634.
		

References

  • R. C. Entringer, A combinatorial interpretation of the Euler and Bernoulli numbers, Nieuw Archief voor Wiskunde, 14 (1966), 241-246.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    f:=sec(x)+tan(x): fser:=series(f,x=0,30): E[0]:=1: for n from 1 to 25 do E[n]:=n!*coeff(fser,x^n) od: a:=n->sum((-1)^i*binomial(n,2*i+1)*E[n+4-2*i],i=0..floor((n-1)/2)): seq(a(n),n=0..15);
    # Alternatively after Alois P. Heinz in A000111:
    b := proc(u, o) option remember;
    `if`(u + o = 0, 1, add(b(o - 1 + j, u - j), j = 1..u)) end:
    a := n -> b(n, 5): seq(a(n), n = 0..21); # Peter Luschny, Oct 27 2017
  • Mathematica
    t[n_, 0] := If[n == 0, 1, 0]; t[n_ , k_ ] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n + 5, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)

Formula

From Emeric Deutsch, May 15 2004: (Start)
a(n) = Sum_{i=0..floor((n-1)/2)} (-1)^i * binomial(n, 2*i+1) * E[n + 4 - 2*i], where E[j] = A000111(j) = j! * [x^j] (sec(x) + tan(x)) are the up/down or Euler numbers.
a(n) = T(n+5, n), where T is the triangle in A008282. (End)

Extensions

More terms from Jean-François Alcover, Feb 12 2016

A006216 Number of down-up permutations of n+4 starting with 4.

Original entry on oeis.org

2, 5, 14, 46, 178, 800, 4094, 23536, 150178, 1053440, 8057774, 66750976, 595380178, 5688903680, 57975175454, 627692271616, 7195247514178, 87056789995520, 1108708685037134, 14825405274259456, 207676251991176178
Offset: 0

Views

Author

Keywords

Comments

Entringer numbers.

Examples

			a(1) = 5 because we have 41325, 41523, 42314, 42513 and 43512.
		

References

  • R. C. Entringer, A combinatorial interpretation of the Euler and Bernoulli numbers, Nieuw Archief voor Wiskunde, 14 (1966), 241-246.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000111. Column k=3 in A008282.

Programs

  • Maple
    f:=sec(x)+tan(x): fser:=series(f,x=0,30): E[0]:=1: for n from 1 to 25 do E[n]:=n!*coeff(fser,x^n) od: seq(3*E[n+2]-E[n],n=0..20);
  • Mathematica
    e[0] = e[1] = 1; e[n_] := 2*Sum[ 4^m*Sum[ (i-(n-1)/2)^(n-1)*Binomial[ n-2*m-1, i-m]*(-1)^(n-i-1), {i, m, (n-1)/ 2}], {m, 0, (n-2)/2}]; a[0]=2; a[n_] := 3e[n+2] - e[n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jan 27 2012, after Emeric Deutsch *)
  • PARI
    {a(n) = local(v=[1], t); if( n<0, 0, for(k=2, n+4, t=0; v = vector(k, i, if( i>1, t += v[k+1-i]))); v[4])}; /* Michael Somos, Feb 03 2004 */

Formula

a(n) = 3*E(n+2) - E(n), where E(j) = A000111(j) = j!*[x^j](sec(x) + tan(x)) are the up/down or Euler numbers. - Emeric Deutsch, May 15 2004
E.g.f.: 6/(cos(x)*(1 - sin(x))) - tan(x) - 4*sec(x). - Sergei N. Gladkovskii, Jun 04 2015
a(n) ~ 3*n^2 * 2^(n+4) * n! / Pi^(n+3). - Vaclav Kotesovec, Jun 04 2015

A006217 Number of down-up permutations of n+5 starting with 5.

Original entry on oeis.org

5, 16, 56, 224, 1024, 5296, 30656, 196544, 1383424, 10608976, 88057856, 786632864, 7525556224, 76768604656, 831846342656, 9541952653184, 115516079079424, 1471865234248336, 19689636672045056, 275914012819601504
Offset: 0

Views

Author

Keywords

Comments

Entringer numbers.

Examples

			a(0)=5 because we have 51324, 51423, 52314, 52413 and 53412.
		

References

  • R. C. Entringer, A combinatorial interpretation of the Euler and Bernoulli numbers, Nieuw Archief voor Wiskunde, 14 (1966), 241-246.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=4 in A008282.
Cf. A000111.

Programs

  • Maple
    f:=sec(x)+tan(x): fser:=series(f,x=0,35): E[0]:=1: for n from 1 to 40 do E[n]:=n!*coeff(fser,x^n) od: 5, seq(4*E[n-1]-4*E[n-3],n=5..23);
  • PARI
    {a(n) = local(v=[1], t); if( n<0, 0, for(k=2, n+5, t=0; v = vector(k, i, if( i>1, t += v[k+1-i]))); v[5])}; /* Michael Somos, Feb 03 2004 */

Formula

a(0) = 5 and a(n) = 4*E(n+3) - 4*E(n+1) for n >= 1, where E(j) = A000111(j) = j!*[x^j](sec(x) + tan(x)) are the up/down or Euler numbers. - Emeric Deutsch, May 15 2004

Extensions

More terms from Emeric Deutsch, May 15 2004

A006214 Number of down-up permutations of n+5 starting with n+1.

Original entry on oeis.org

0, 5, 32, 178, 1024, 6320, 42272, 306448, 2401024, 20253440, 183194912, 1769901568, 18198049024, 198465167360, 2288729963552, 27831596812288, 355961301697024, 4777174607790080, 67129052143388192, 985743987073220608, 15098811288386497024, 240833888369219993600
Offset: 0

Views

Author

Keywords

Comments

Entringer numbers.

Examples

			a(1)=5 because we have 214365, 215364, 215463, 216354 and 216453.
		

References

  • R. C. Entringer, A combinatorial interpretation of the Euler and Bernoulli numbers, Nieuw Archief voor Wiskunde, 14 (1966), 241-246.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    f:=sec(x)+tan(x): fser:=series(f,x=0,30): E[0]:=1: for n from 1 to 25 do E[n]:=n!*coeff(fser,x^n) od: a:=n->sum((-1)^i*binomial(n,2*i+1)*E[n+3-2*i],i=0..floor((n-1)/2)): seq(a(n),n=0..16);
    # Alternatively after Alois P. Heinz in A000111:
    b := proc(u, o) option remember;
    `if`(u + o = 0, 1, add(b(o - 1 + j, u - j), j = 1..u)) end:
    a := n -> b(n, 4): seq(a(n), n = 0..21); # Peter Luschny, Oct 27 2017
  • Mathematica
    t[n_, 0] := If[n == 0, 1, 0]; t[n_ , k_ ] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n + 4, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)

Formula

a(n) = sum((-1)^i*binomial(n, 2i+1)*E[n+3-2i], i=0..floor((n-1)/2)), where E[j]=A000111(j)=j!*[x^j](sec(x)+tan(x)) are the up/down or Euler numbers. a(n)=T(n+4, n), where T is the triangle in A008282. - Emeric Deutsch, May 15 2004

Extensions

More terms from Jean-François Alcover, Feb 12 2016

A008283 Read across rows of Euler-Bernoulli or Entringer triangle.

Original entry on oeis.org

1, 2, 4, 5, 10, 14, 16, 32, 46, 56, 61, 122, 178, 224, 256, 272, 544, 800, 1024, 1202, 1324, 1385, 2770, 4094, 5296, 6320, 7120, 7664, 7936, 15872, 23536, 30656, 36976, 42272, 46366, 49136, 50521, 101042, 150178, 196544, 238816, 275792, 306448, 329984, 345856
Offset: 3

Views

Author

Keywords

Examples

			This is a sub-triangle of A008282, starting in row 3 of A008282 and then proceeding as a regular triangle.
[ 3] 1
[ 4] 2,     4
[ 5] 5,     10,     14
[ 6] 16,    32,     46,     56
[ 7] 61,    122,    178,    224,    256
[ 8] 272,   544,    800,    1024,   1202,   1324
[ 9] 1385,  2770,   4094,   5296,   6320,   7120,   7664
[10] 7936,  15872,  23536,  30656,  36976,  42272,  46366,  49136
[11] 50521, 101042, 150178, 196544, 238816, 275792, 306448, 329984, 345856
		

Crossrefs

Cf. A008282.

Programs

  • Maple
    T := proc(n, k) option remember; if k = 0 then `if`(n = 0, 1, 0) else
    T(n, k - 1) + T(n - 1, n - k) fi end:
    seq(seq(T(n, k-2), k = 3..n), n = 3..11); # Peter Luschny, Feb 17 2021
  • Mathematica
    T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0],
         T[n, k - 1] + T[n - 1, n - k]];
    Table[Table[T[n, k - 2], {k, 3, n}], {n, 3, 11}] // Flatten (* after Peter Luschny *)
Previous Showing 11-20 of 21 results. Next