Original entry on oeis.org
1, 3, 39, 949, 36573, 2029551, 152451283, 14840686449, 1812664465209, 270925848659323, 48571769994336831, 10276325760127883853, 2531148652596607988629, 717525135328209346300839, 231804543407519025287933163
Offset: 0
-
Table[HypergeometricPFQ[{-n+1,-n},{},1]HypergeometricPFQ[{-n,-n-1},{},1],{n,0,100}]
-
makelist(hypergeometric([-n+1,-n],[],1)*hypergeometric([-n,-n-1],[],1),n,0,12);
A276965
Square row sums of the triangle of Lah numbers (A105278).
Original entry on oeis.org
1, 1, 5, 73, 2017, 86801, 5289301, 430814665, 45052534913, 5868875082817, 930114039075301, 175964489469769001, 39125942325820605025, 10092849114680961297553, 2987365449592984040715317, 1005030253302269078318250601
Offset: 0
-
Table[HypergeometricPFQ[{1-n,1-n,-n,-n},{1},1],{n,0,100}]
-
makelist(hypergeometric([-n+1,-n+1,-n,-n],[1],1),n,0,12);
-
concat([1], for(n=1,25, print1(sum(k=0,n, binomial(n,k)^2*binomial(n-1,k-1)^2*((n-k)!)^2), ", "))) \\ G. C. Greubel, Jun 05 2017
-
use ntheory ":all"; for my $n (0..20) { say "$n ",vecsum(map{my $l=stirling($n,$,3); vecprod($l,$l); } 0..$n) } # _Dana Jacobsen, Mar 16 2017
A076126
Triangle T(n,k) of associated Lah numbers, n>=2, k=1..floor(n/2).
Original entry on oeis.org
2, 6, 24, 12, 120, 120, 720, 1080, 120, 5040, 10080, 2520, 40320, 100800, 40320, 1680, 362880, 1088640, 604800, 60480, 3628800, 12700800, 9072000, 1512000, 30240, 39916800, 159667200, 139708800, 33264000, 1663200, 479001600
Offset: 2
2; 6; 24, 12; 120,120; 720,1080,120; 5040,10080, 2520; ...
A223513
Triangle T(n,k) represents the coefficients of (x^11*d/dx)^n, where n=1,2,3,...
Original entry on oeis.org
1, 11, 1, 231, 33, 1, 7161, 1287, 66, 1, 293601, 61215, 4125, 110, 1, 14973651, 3476781, 279840, 10065, 165, 1, 913392711, 230534073, 21106701, 924000, 20790, 231, 1, 64850882481, 17511845967, 1771323246, 89482701, 2483250, 38346, 308, 1
Offset: 1
1;
11,1;
231,33,1;
7161,1287,66,1;
293601,61215,4125,110,1;
14973651,3476781,279840,10065,165,1;
913392711,230534073,21106701,924000,20790,23,1;
64850882481,17511845967,1771323246,89482701,2483250,38346,308,1;
Cf.
A008277,
A019538,
A035342,
A035469,
A049029,
A049385,
A092082,
A132056,
A223511-
A223522,
A223168-
A223172,
A223523-
A223532.
A223519
Triangle T(n,k) represents the coefficients of (x^17*d/dx)^n, where n=1,2,3,...
Original entry on oeis.org
1, 17, 1, 561, 51, 1, 27489, 3111, 102, 1, 1786785, 232815, 9945, 170, 1, 144729585, 20877615, 1058250, 24225, 255, 1, 14038769745, 2190735855, 125644365, 3480750, 49980, 357, 1, 1586380981185, 263782657215, 16639837830, 529411365, 9328410, 92106, 476, 1
Offset: 1
1;
17,1;
561,51,1;
27489,3111,102,1;
1786785,232815,9945,170,1;
144729585,20877615,1058250,24225,255,1;
14038769745,2190735855,125644365,3480750,49980,357,1;
1586380981185,263782657215,16639837830,529411365,9328410,92106,476,1;
Cf.
A008277,
A019538,
A035342,
A035469,
A049029,
A049385,
A092082,
A132056,
A223511-
A223522,
A223168-
A223172,
A223523-
A223532.
A223520
Triangle T(n,k) represents the coefficients of (x^18*d/dx)^n, where n=1,2,3,....
Original entry on oeis.org
1, 18, 1, 630, 54, 1, 32760, 3492, 108, 1, 2260440, 277200, 11160, 180, 1, 194397840, 26376840, 1259280, 27180, 270, 1, 20022977520, 2937589200, 158601240, 4140360, 56070, 378, 1, 2402757302400, 375471270720, 22286940480, 667865520, 11093040, 103320, 504, 1
Offset: 1
1;
18,1;
630,54,1;
32760,3492,108,1;
2260440,277200,11160,180,1;
194397840,26376840,1259280,27180,270,1;
20022977520,2937589200,158601240,4140360,56070,378,1;
2402757302400,375471270720,22286940480,667865520,11093040,103320,504,1
Cf.
A008277,
A019538,
A035342,
A035469,
A049029,
A049385,
A092082,
A132056,
A223511-
A223522,
A223168-
A223172,
A223523-
A223532.
A223521
Triangle T(n,k) represents the coefficients of (x^19*d/dx)^n, where n=1,2,3,...
Original entry on oeis.org
1, 19, 1, 703, 57, 1, 38665, 3895, 114, 1, 2822545, 326895, 12445, 190, 1, 256851595, 32896885, 1484280, 30305, 285, 1, 27996823855, 3875508945, 197651965, 4878440, 62510, 399, 1, 3555596629585, 524061968815, 29372612430, 831849165, 13067250, 115178, 532, 1
Offset: 1
1;
19,1;
703,57,1;
38665,3895,114,1;
2822545,326895,12445,190,1;
256851595,32896885,1484280,30305,285,1;
27996823855,3875508945,197651965,4878440,62510,399,1;
3555596629585,524061968815,29372612430,831849165,13067250,115178,532,1;
Cf.
A008277,
A019538,
A035342,
A035469,
A049029,
A049385,
A092082,
A132056,
A223511-
A223522,
A223168-
A223172,
A223523-
A223532.
Comments