cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A053498 Number of degree-n permutations of order dividing 8.

Original entry on oeis.org

1, 1, 2, 4, 16, 56, 256, 1072, 11264, 78976, 672256, 4653056, 49810432, 433429504, 4448608256, 39221579776, 607251736576, 7244686764032, 101611422797824, 1170362064019456, 19281174853615616, 261583327556386816, 4084459360167657472, 54366023748591386624
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +x^2/2 +x^4/4 +x^8/8) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 14 2019
    
  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 2, 4, 8])))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 14 2013
  • Mathematica
    CoefficientList[Series[Exp[x+x^2/2+x^4/4+x^8/8], {x, 0, 23}], x]*Range[0, 23]! (* Jean-François Alcover, Mar 24 2014 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x +x^2/2 +x^4/4 +x^8/8) )) \\ G. C. Greubel, May 14 2019
    
  • Sage
    m = 30; T = taylor(exp(x +x^2/2 +x^4/4 +x^8/8), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 14 2019

Formula

E.g.f.: exp(x + x^2/2 + x^4/4 + x^8/8).

A053504 Number of degree-n permutations of order dividing 24.

Original entry on oeis.org

1, 1, 2, 6, 24, 96, 576, 3312, 26496, 198144, 1691136, 14973696, 193370112, 2034809856, 25087186944, 313539434496, 4421478721536, 58307347556352, 915011420737536, 13553664911437824, 240637745416421376, 3965015057937924096
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +x^2/2 +x^3/3 +x^4/4 +x^6/6 +x^8/8 +x^12/12 +x^24/24) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
    
  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 2, 3, 4, 6, 8, 12, 24])))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 25 2014
  • Mathematica
    a[n_]:= a[n] = If[n<0, 0, If[n==0, 1, Sum[Product[n-i, {i, 1, j-1}]*a[n-j], {j, {1, 2, 3, 4, 6, 8, 12, 24}}]]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 19 2014, after Alois P. Heinz *)
    With[{nn=30},CoefficientList[Series[Exp[Total[x^#/#&/@Divisors[24]]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 05 2016 *)
  • PARI
    N=30; x='x+O('x^N);
    Vec(serlaplace(exp(sumdiv(24, d, x^d/d)))) \\ Gheorghe Coserea, May 11 2017
    
  • Sage
    m = 30; T = taylor(exp(x +x^2/2 +x^3/3 +x^4/4 +x^6/6 +x^8/8 +x^12/12 +x^24/24), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019

Formula

E.g.f.: exp(x + x^2/2 + x^3/3 + x^4/4 + x^6/6 + x^8/8 + x^12/12 + x^24/24).

A053500 Number of degree-n permutations of order dividing 10.

Original entry on oeis.org

1, 1, 2, 4, 10, 50, 220, 1240, 6140, 32860, 602200, 5668400, 62030200, 522328600, 4487190800, 62591332000, 715163146000, 9573774122000, 105731659828000, 1187355279592000, 29205778751300000, 481597207656340000, 9086318388933400000, 132525988426667120000
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^2/2 + x^5/5 + x^10/10) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
    
  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 2, 5, 10])))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 14 2013
  • Mathematica
    a[n_]:= a[n] = If[n<0, 0, If[n==0, 1, Sum[Product[n-i, {i, 1, j-1}] *a[n-j], {j, {1, 2, 5, 10}}]]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 24 2014, after Alois P. Heinz *)
    With[{m = 30}, CoefficientList[Series[Exp[x +x^2/2 +x^5/5 +x^10/10], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 15 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x + x^2/2 + x^5/5 + x^10/10) )) \\ G. C. Greubel, May 15 2019
    
  • Sage
    m = 30; T = taylor(exp(x + x^2/2 + x^5/5 + x^10/10), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019

Formula

E.g.f.: exp(x + x^2/2 + x^5/5 + x^10/10).

A053501 Number of degree-n permutations of order dividing 11.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3628801, 43545601, 283046401, 1320883201, 4953312001, 15850598401, 44910028801, 115482931201, 274271961601, 609493248001, 1279935820801, 4644633666390681601, 106826520356358566401, 1281918194457262387201
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^11/11) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
    
  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 11])))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 14 2013
  • Mathematica
    a[n_]:= n!*Sum[If[Mod[11*k-n, 10] == 0, Binomial[k, (11*k-n)/10]*11^((k-n)/10)/k!, 0], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Mar 20 2014, after Vladimir Kruchinin *)
    With[{m = 30}, CoefficientList[Series[Exp[x +x^11/11], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 15 2019 *)
  • Maxima
    a(n):=n!*sum(if mod(11*k-n,10)=0 then binomial(k,(11*k-n)/10)*(11)^((k-n)/10)/k! else 0,k,1,n); /* Vladimir Kruchinin, Sep 10 2010 */
    
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x +x^11/11) )) \\ G. C. Greubel, May 15 2019
    
  • Sage
    m = 30; T = taylor(exp(x +x^11/11), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019

Formula

E.g.f.: exp(x + x^11/11).
a(n) = n!*Sum_{k=1..n} (if mod(11*k-n,10)=0 then C(k,(11*k-n)/10)*(11)^((k-n)/10)/k!, else 0), n>0. - Vladimir Kruchinin, Sep 10 2010

A053503 Number of degree-n permutations of order dividing 16.

Original entry on oeis.org

1, 1, 2, 4, 16, 56, 256, 1072, 11264, 78976, 672256, 4653056, 49810432, 433429504, 4448608256, 39221579776, 1914926104576, 29475151020032, 501759779405824, 6238907914387456, 120652091860975616, 1751735807564578816, 29062253310781161472, 398033706586943258624
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

Comments

Differs from A005388 first at n=32. - Alois P. Heinz, Feb 14 2013

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^2/2 + x^4/4 + x^8/8 + x^16/16) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
    
  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..2^j-1)*a(n-2^j), j=0..4)))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 14 2013
  • Mathematica
    a[n_]:= a[n] =If[n<0, 0, If[n==0, 1, Sum[Product[n-i, {i, 1, 2^j-1}]* a[n-2^j], {j, 0, 4}]]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 19 2014, after Alois P. Heinz *)
    With[{m = 30}, CoefficientList[Series[Exp[x +x^2/2 +x^4/4 +x^8/8 + x^16/16], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 15 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x + x^2/2 + x^4/4 + x^8/8 + x^16/16) )) \\ G. C. Greubel, May 15 2019
    
  • Sage
    m = 30; T = taylor(exp(x + x^2/2 + x^4/4 + x^8/8 + x^16/16), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019

Formula

E.g.f.: exp(x + x^2/2 + x^4/4 + x^8/8 + x^16/16).

A284517 Periodic with period [1, 4, 3, 4, 1, 6] of length 6.

Original entry on oeis.org

1, 4, 3, 4, 1, 6, 1, 4, 3, 4, 1, 6, 1, 4, 3, 4, 1, 6, 1, 4, 3, 4, 1, 6, 1, 4, 3, 4, 1, 6, 1, 4, 3, 4, 1, 6, 1, 4, 3, 4, 1, 6, 1, 4, 3, 4, 1, 6, 1, 4, 3, 4, 1, 6, 1, 4, 3, 4, 1, 6, 1, 4, 3, 4, 1, 6, 1, 4, 3, 4, 1, 6, 1, 4, 3, 4, 1, 6, 1, 4, 3, 4, 1, 6, 1, 4, 3, 4, 1, 6, 1, 4, 3, 4, 1, 6, 1, 4, 3, 4, 1, 6, 1, 4, 3, 4, 1, 6
Offset: 1

Views

Author

R. J. Mathar, Mar 28 2017

Keywords

Crossrefs

Row 3 of A008307.
Cf. A284518.

Formula

G.f. -x*(1+5*x+7*x^2+6*x^3) / ( (x-1)*(1+x)*(1+x+x^2) ).
a(n+6) = a(n).
a(n) = (24 - ((n mod 6)^5 - 13*(n mod 6)^4 + 61*(n mod 6)^3 - 123*(n mod 6)^2 + 94*(n mod 6)))/4 for n>0. - Luce ETIENNE, Oct 19 2017

A284518 Periodic with period [1, 10, 9, 16, 1, 18, 1, 16, 9, 10, 1, 24] of length 12.

Original entry on oeis.org

1, 10, 9, 16, 1, 18, 1, 16, 9, 10, 1, 24, 1, 10, 9, 16, 1, 18, 1, 16, 9, 10, 1, 24, 1, 10, 9, 16, 1, 18, 1, 16, 9, 10, 1, 24, 1, 10, 9, 16, 1, 18, 1, 16, 9, 10, 1, 24, 1, 10, 9, 16, 1, 18, 1, 16, 9, 10, 1, 24, 1, 10, 9, 16, 1, 18, 1, 16, 9, 10, 1, 24, 1, 10, 9, 16, 1, 18, 1, 16
Offset: 1

Views

Author

R. J. Mathar, Mar 28 2017

Keywords

Crossrefs

Row 4 of A008307.
Cf. A284517.

Formula

a(n+12)=a(n).
G.f.: -x*(1+11*x+20*x^2+35*x^3+25*x^4+24*x^5) / ( (x-1)*(1+x)*(1+x+x^2)*(x^2+1) ). - R. J. Mathar, Mar 28 2017
Previous Showing 11-17 of 17 results.