A341875
Coefficients of the series whose 24th power equals E_2(x)*E_4(x)/E_6(x), where E_2(x), E_4(x) and E_6(x) are the Eisenstein series A006352, A004009 and A013973.
Original entry on oeis.org
1, 30, 5310, 2453220, 910100190, 409796742600, 181276113779460, 84362079365838960, 39636500385830239350, 18986938020443181757410, 9186944625290601368703000, 4491611148118819794144792660, 2212757749022582852433835771860, 1097546094982154634980848454416920
Offset: 0
Cf.
A006352 (E_2),
A004009 (E_4),
A008410 (E_8),
A013973,
A013974 (E_10).
A108091 (E_8)^(1/16),
A110150 ((E_10)^(1/4)),
A289392 ((E_2)^(1/4)),
A341871 -
A341874,
A377973,
A377974,
A377975,
A377976,
A377977.
-
E(2,x) := 1 - 24*add(k*x^k/(1-x^k), k = 1..20):
E(4,x) := 1 + 240*add(k^3*x^k/(1-x^k), k = 1..20):
E(6,x) := 1 - 504*add(k^5*x^k/(1-x^k), k = 1..20):
with(gfun): series((E(2,x)*E(4,x)/E(6,x))^(1/24), x, 20):
seriestolist(%);
A279892
Eisenstein series E_18(q) (alternate convention E_9(q)), multiplied by 43867.
Original entry on oeis.org
43867, -28728, -3765465144, -3709938631392, -493547047383096, -21917724609403728, -486272786232443616, -6683009405824511424, -64690198594597187640, -479102079577959825624, -2872821917728374840144, -14520482234727711482016, -63736746640768788267744
Offset: 0
- J.-P. Serre, Course in Arithmetic, Chap. VII, Section 4.
Cf.
A006352 (E_2),
A004009 (E_4),
A013973 (E_6),
A008410 (E_8),
A013974 (E_10),
A029828 (691*E_12),
A058550 (E_14),
A029829 (3617*E_16), this sequence (43867*E_18),
A029830 (174611*E_20),
A279893 (77683*E_22),
A029831 (236364091*E_24).
-
terms = 13;
E18[x_] = 43867 - 28728*Sum[k^17*x^k/(1 - x^k), {k, 1, terms}];
E18[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A279893
Eisenstein series E_22(q) (alternate convention E_11(q)), multiplied by 77683.
Original entry on oeis.org
77683, -552, -1157628456, -5774114968608, -2427722831757864, -263214111328125552, -12109202528761173024, -308317316973972772416, -5091303792066668003880, -60399282006368937251976, -552000263214112485753456, -4084937969230504375869024, -25394838301602325644596256, -136379620048544616772836528, -646588586243917921590531648
Offset: 0
- J.-P. Serre, Course in Arithmetic, Chap. VII, Section 4.
Cf.
A006352 (E_2),
A004009 (E_4),
A013973 (E_6),
A008410 (E_8),
A013974 (E_10),
A029828 (691*E_12),
A058550 (E_14),
A029829 (3617*E_16),
A279892 (43867*E_18),
A029830 (174611*E_20), this sequence (77683*E_22),
A029831 (236364091*E_24).
-
terms = 15;
E22[x_] = 77683 - 552*Sum[k^21*x^k/(1 - x^k), {k, 1, terms}];
E22[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A287933
Coefficients in expansion of 1/E_8.
Original entry on oeis.org
1, -480, 168480, -52199040, 15119446560, -4198347132480, 1132514464199040, -299116847254053120, 77742157641008378400, -19951615350261029163360, 5068304275307482667436480, -1276700988345016720650917760
Offset: 0
Original entry on oeis.org
1, 128, 2188, 16384, 78126, 280064, 823544, 2097152, 4785157, 10000128, 19487172, 35848192, 62748518, 105413632, 170939688, 268435456, 410338674, 612500096, 893871740, 1280016384, 1801914272, 2494358016, 3404825448
Offset: 1
G.f. = q + 128*q^2 + 2188*q^3 + 16384*q^4 + 78126*q^5 + 280064*q^6 + 823544*q^7 + ...
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- H. H. Chan and C. Krattenthaler, Recent progress in the study of representations of integers as sums of squares, arXiv:math/0407061 [math.NT], 2004.
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
- Index entries for sequences mentioned by Glaisher.
-
A := Basis( ModularForms( Gamma0(2), 8), 24); A[2] + 128*A[3]; /* Michael Somos, Nov 30 2014 */
-
a[ n_] := SeriesCoefficient[ With[{u1 = QPochhammer[ q]^8, u2 = QPochhammer[ q^2]^8, u4 = QPochhammer[ q^4]^8}, q u2 (u1^2 + 136 q u4 u1 + 2176 q^2 u4^2 ) / u1], {q, 0, n}]; (* Michael Somos, Jun 04 2013 *)
a[ n_] := If[ n < 1, 0, Sum[ d^7 Mod[ n/d, 2], {d, Divisors[ n]}]]; (* Michael Somos, Jan 09 2015 *)
-
{a(n) = if( n<1, 0, sumdiv( n, d, (n/d%2) * d^7))};
-
ModularForms( Gamma0(2), 8, prec=24).2; # Michael Somos, Jun 04 2013
A282208
Coefficients in q-expansion of E_2^2*E_4, where E_2 and E_4 are respectively the Eisenstein series A006352 and A004009.
Original entry on oeis.org
1, 192, -8928, 9984, 1420896, 11433600, 53760384, 187233792, 533725920, 1327018944, 2953851840, 6060858624, 11611915392, 21030301824, 36387585792, 60357358080, 97020376032, 150755202432, 229107724704, 338493223680, 492378465600, 698632525824, 980953593984
Offset: 0
-
terms = 23;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E2[x]^2*E4[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A290180
Coefficients in expansion of E_8*Delta^2 where Delta is the generating function of Ramanujan's tau function (A000594).
Original entry on oeis.org
1, 432, 39960, -1418560, 17312940, -71928864, -462815680, 7500885120, -38038437810, 29000909200, 729783353376, -4661016429888, 13691625085880, -16503845217120, -14982974507520, 45085348093056, 99234456545637, -157805792764560, -1644659689877680
Offset: 2
-
terms = 19;
E8[x_] = 1 + 480*Sum[k^7*x^k/(1 - x^k), {k, 1, terms}];
E8[x]*QPochhammer[x]^48 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A282330
Coefficients in q-expansion of E_4^6, where E_4 is the Eisenstein series A004009.
Original entry on oeis.org
1, 1440, 876960, 292072320, 57349833120, 6660135541440, 436536302762880, 15172132360815360, 327295477379498400, 4913576699608450080, 55439481453769056960, 496426192564963006080, 3672749219557161663360, 23148323907214334109120
Offset: 0
-
terms = 14;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^6 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A377974
Expansion of the 1920th root of the series 2*E_4(x) - E_8(x), where E_4 and E_8 are the Eisenstein series of weight 4 and weight 8.
Original entry on oeis.org
1, 0, -30, -540, -867660, -31107300, -33668157900, -1795572812400, -1477793386682970, -103845834995498100, -69550699526934273180, -6017200267937951322660, -3426636160378174348594500, -349303370036461528632524580, -174458882971934188146144343320, -20314204536496741742949242177040
Offset: 0
-
with(numtheory):
E := proc (k) local n, t1; t1 := 1 - 2*k*add(sigma[k-1](n)*q^n, n = 1..30)/bernoulli(k); series(t1, q, 30) end:
seq(coeftayl((2*E(4) - E(8))^(1/1920), q = 0, n),n = 0..20);
-
terms = 20; E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; E8[x_] = 1 + 480*Sum[k^7*x^k/(1 - x^k), {k, 1, terms}]; CoefficientList[Series[(2*E4[x] - E8[x])^(1/1920), {x, 0, terms}], x] (* Vaclav Kotesovec, Aug 03 2025 *)
A282356
Eisenstein series E_26(q) (alternate convention E_13(q)), multiplied by 657931.
Original entry on oeis.org
657931, -24, -805306392, -20334926626656, -27021598569529368, -7152557373046875024, -682326933054044766048, -32185646871935157619392, -906694391732570450559000, -17229551704624797057112632, -240000007152557373852181392
Offset: 0
Cf.
A006352 (E_2),
A004009 (E_4),
A013973 (E_6),
A008410 (E_8),
A013974 (E_10),
A029828 (691*E_12),
A058550 (E_14),
A029829 (3617*E_16),
A279892 (43867*E_18),
A029830 (174611*E_20),
A279893 (77683*E_22),
A029831 (236364091*E_24), this sequence (657931*E_26).
-
terms = 11;
E26[x_] = 657931 - 24*Sum[k^25*x^k/(1 - x^k), {k, 1, terms}];
E26[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
Comments