cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 66 results. Next

A005883 Theta series of square lattice with respect to deep hole.

Original entry on oeis.org

4, 8, 4, 8, 8, 0, 12, 8, 0, 8, 8, 8, 4, 8, 0, 8, 16, 0, 8, 0, 4, 16, 8, 0, 8, 8, 0, 8, 8, 8, 4, 16, 0, 0, 8, 0, 16, 8, 8, 8, 0, 0, 12, 8, 0, 8, 16, 0, 8, 8, 0, 16, 0, 0, 0, 16, 12, 8, 8, 0, 8, 8, 0, 0, 8, 8, 16, 8, 0, 8, 8, 0, 12, 8, 0, 0, 16, 0, 8, 8, 0, 24, 0, 8, 8, 0, 0, 8, 8, 0, 4, 16, 8, 8, 16, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
In [Jacobi 1829] on page 105 is equation 18: "2 k K / Pi = 4 sqrt(q) + 8 sqrt(q^5) + 4 sqrt(q^9) [...]". - Michael Somos, Sep 09 2012

Examples

			4 + 8*x + 4*x^2 + 8*x^3 + 8*x^4 + 12*x^6 + 8*x^7 + 8*x^9 + 8*x^10 + 8*x^11 + ...
4*q + 8*q^3 + 4*q^5 + 8*q^7 + 8*q^9 + 12*q^13 + 8*q^15 + 8*q^19 + 8*q^21 + ...
Theta = 4*q^(1/2) + 8*q^(5/2) + 4*q^(9/2) + 8*q^(13/2) + 8*q^(17/2) + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 106.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • C. G. J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum, 1829.

Crossrefs

Cf. A008441.

Programs

  • Mathematica
    a[0] = 4; a[n_] := 4*DivisorSum[4n+1, (-1)^Quotient[#, 2]&]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 04 2015, translated from PARI *)
    s = 4*(QPochhammer[q^2]^4/QPochhammer[q]^2)+O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 09 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n = 4*n + 1; 4 * sumdiv(n, d, (-1)^(d\2)))} /* Michael Somos, Oct 31 2006 */

Formula

Expansion of Jacobi theta constant q^(-1/2) * theta_2(q)^2 in powers of q^2. - Michael Somos, Oct 31 2006
G.f.: 4 * (Product_{k>0} (1 - x^k) * (1 + x^(2*k))^2)^2. - Michael Somos, Oct 31 2006
From Michael Somos, Sep 09 2012: (Start)
Expansion of 4 * psi(x)^2 in powers of x where psi() is a Ramanujan theta function.
Expansion of q^(-1) * (1/2) * (1 - k') * K / (Pi/2) in powers of q^4 where k', K are Jacobi elliptic functions.
Expansion of q^(-1/2) * k * K / (Pi/2) in powers of q^2 where k, K are Jacobi elliptic functions.
Expansion of q^(-1/4) * 2 * k^(1/2) * K / (Pi/2) in powers of q where k, K are Jacobi elliptic functions.
Expansion of 4 * q^(-1/4) * eta(q^2)^4 / eta(q)^2 in powers of q.
a(n) = 4 * A008441(n). (End)

A113406 Half the number of integer solutions to x^2 + 4 * y^2 = n.

Original entry on oeis.org

1, 0, 0, 2, 2, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 4, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 4, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 4, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 6, 2, 0, 0, 4, 0
Offset: 1

Views

Author

Michael Somos, Oct 28 2005

Keywords

Examples

			x + 2*x^4 + 2*x^5 + 2*x^8 + x^9 + 2*x^13 + 2*x^16 + 2*x^17 + 4*x^20 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 373 Entry 32.
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 120.

Crossrefs

Programs

  • Mathematica
    s = (EllipticTheta[3, 0, q]*EllipticTheta[3, 0, q^4] - 1)/(2 q) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Dec 02 2015 *)
  • PARI
    {a(n) = if( n<1, 0, qfrep( [1, 0; 0, 4], n)[n])}
    
  • PARI
    {a(n) = if( n<1, 0, if( n%4==1, sumdiv( n, d, (-1)^(d\2)), if( n%4==0, 2 * sumdiv( n, d, kronecker( -4, d)))))}
    
  • PARI
    {a(n) = local(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], if( p = A[k,1], e = A[k,2]; if( p==2, 2 * (e>1), if( p%4==3, (1 + (-1)^e) / 2, e+1)))))}

Formula

a(n) is multiplicative with a(2) = 0, a(2^e) = 2 if e>1, a(p^e) = e+1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e)/2 if p == 3 (mod 4)
G.f.: (theta_3(q) * theta_3(q^4) - 1) / 2.
a(4*n + 2) = a(4*n + 3) = 0. A004531(n) = 2 * a(n) if n>0. a(4*n + 1) = A008441(n). A004018(n) = 2 * a(4*n) if n>0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/4 = 0.785398... (A003881). - Amiram Eldar, Oct 15 2022

A122857 Expansion of (phi(q)^2 + phi(q^3)^2) / 2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 0, 2, 2, 4, 0, 2, 4, 0, 4, 2, 4, 2, 0, 4, 0, 0, 0, 2, 6, 4, 2, 0, 4, 4, 0, 2, 0, 4, 0, 2, 4, 0, 4, 4, 4, 0, 0, 0, 4, 0, 0, 2, 2, 6, 4, 4, 4, 2, 0, 0, 0, 4, 0, 4, 4, 0, 0, 2, 8, 0, 0, 4, 0, 0, 0, 2, 4, 4, 6, 0, 0, 4, 0, 4, 2, 4, 0, 0, 8, 0, 4, 0, 4, 4, 0, 0, 0, 0, 0, 2, 4, 2, 0, 6, 4, 4, 0, 4
Offset: 0

Views

Author

Michael Somos, Sep 14 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + 2*q^2 + 2*q^3 + 2*q^4 + 4*q^5 + 2*q^6 + 2*q^8 + 2*q^9 + 4*q^10 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 197, Entry 44.

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], 2 DivisorSum[ n, KroneckerSymbol[ -36, #] &]]; (* Michael Somos, Jul 09 2013 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q]^2 + EllipticTheta[ 3, 0, q^3]^2) / 2, {q, 0, n}]; (* Michael Somos, Jul 09 2013 *)
  • PARI
    {a(n) = if( n<1, n==0, 2 * sumdiv( n, d, kronecker( -36, d)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); 2 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, 1, p%12<6, e+1, !(e%2) )))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); prod( k=1, matsize(A)[1],
         [p, e] = A[k, ]; if( p==2, 1, p==3, 1+e%2*2, p%4==1, e+1, !(e%2) )))};

Formula

Expansion of eta(q^2)^3 * eta(q^3)^2 * eta(q^6) / (eta(q)^2 * eta(q^4)* eta(q^12)) in powers of q.
Expansion of 2 * psi(q) * psi(q^2) * psi(q^3) / psi(q^6) - phi(q^3)^2 in powers of q. - Michael Somos, Jul 09 2013
Euler transform of period 12 sequence [ 2, -1, 0, 0, 2, -4, 2, 0, 0, -1, 2, -2, ...].
Moebius transform is period 12 sequence [ 2, 0, 0, 0, 2, 0, -2, 0, 0, 0, -2, 0, ...].
a(12*n + 7) = a(12*n + 11) = 0.
a(n) = 2 * b(n) where b(n) is multiplicative and b(2^e) = b(3^e) = 1, b(p^e) = e+1 if p == 1, 5 (mod 12), a(p^e) == (1-(-1)^e)/2 if p == 7, 11 (mod 12).
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 4 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A125061.
A035154(n) = a(n) / 2 if n > 0. A008441(n) = a(4*n + 1) / 2. A125079(n) = a(2*n + 1) / 2. A113446(3*n + 1) = A002654(3*n + 1) = a(3*n + 1) / 2.
a(n) = (-1)^n * A132003(n). Expansion of (phi(-q^3) / phi(-q)) * phi(-q^2) * phi(-q^6) in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Mar 05 2023
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/3 = 2.0943951... (A019693). - Amiram Eldar, Nov 21 2023

A378007 Square table read by descending antidiagonals: T(n,k) = A378006(k*n+1,k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 0, 1, 0, 1, 1, 1, 2, 4, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 0, 2, 0, 0, 2, 1, 1, 1, 0, 4, 0, 1, 0, 3, 0, 1, 1, 1, 4, 6, 2, 6, 2, 4, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 2, 0, 0, 2, 1, 1, 1, 4, 10, 4, 6, 4, 6, 2, 4, 2, 2, 1, 1
Offset: 0

Views

Author

Jianing Song, Nov 14 2024

Keywords

Comments

A condensed version of A378006: the k-th column is the sequence {b(k*n+1)}, with the sequence {b(n)} having Dirichlet g.f. Product_{chi} L(chi,s), where chi runs through all Dirichlet characters modulo k.

Examples

			Table starts
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
  1, 1, 1, 2, 0, 2, 2, 2, 0, 4, ...
  1, 1, 2, 1, 4, 2, 0, 4, 6, 0, ...
  1, 1, 0, 2, 1, 2, 0, 2, 0, 4, ...
  1, 1, 2, 2, 0, 1, 6, 0, 6, 4, ...
  1, 1, 1, 0, 0, 2, 0, 4, 0, 0, ...
  1, 1, 2, 3, 4, 2, 6, 2, 0, 4, ...
  1, 1, 0, 2, 0, 2, 0, 0, 1, 4, ...
  1, 1, 1, 0, 4, 3, 0, 0, 6, 1, ...
  1, 1, 2, 2, 0, 0, 3, 4, 0, 0, ...
  1, 1, 2, 2, 0, 2, 6, 3, 0, 4, ...
Write w = exp(2*Pi*i/3) = (-1 + sqrt(3)*i)/2.
Column k = 1: 1 + 1/2^s + 1/3^s + 1/4^s + 1/5^s + 1/6^s + 1/7^s + 1/8^s + 1/9^s + 1/10^s + 1/11^s + ...;
Column k = 2: 1 + 1/3^s + 1/5^s + 1/7^s + 1/9^s + 1/11^s + 1/13^s + 1/15^s + 1/17^s + 1/19^s + 1/21^s + ...;
Column k = 3: (1 + 1/2^s + 1/4^s + 1/5^s + ...)*(1 - 1/2^s + 1/4^s - 1/5^s + ...) = 1 + 1/4^s + 2/7^s + 2/13^s + 1/16^s + 2/19^s + 1/25^s + 2/28^s + 2/31^s + ...;
Column k = 4: (1 + 1/3^s + 1/5^s + 1/7^s + ...)*(1 - 1/3^s + 1/5^s - 1/7^s + ...) = 1 + 2/5^s + 1/9^s + 2/13^s + 2/17^s + 3/25^s + 2/29^s + 2/37^s + 2/41^s + ...;
Column k = 5: (1 + 1/2^s + 1/3^s + 1/4^s + ...)*(1 + i/2^s - i/3^s - 1/4^s + ...)*(1 - 1/2^s - 1/3^s + 1/4^s + ...)*(1 - i/2^s + i/3^s - 1/4^s + ...) = 1 + 4/11^s + 1/16^s + 4/31^s + 4/41^s + ...;
Column k = 6: (1 + 1/5^s + 1/7^s + 1/11^s + ...)*(1 - 1/5^s + 1/7^s - 1/11^s + ...) = 1 + 2/7^s + 2/13^s + 2/19^s + 1/25^s + 1/31^s + 2/37^s + 2/43^s + 3/49^s + 2/61^s + ...;
Column k = 7: (1 + 1/2^s + 1/3^s + 1/4^s + 1/5^s + 1/6^s + ...)*(1 + w/2^s + (w+1)/3^s - (w+1)/4^s - w/5^s - 1/6^s + ...)*(1 - (w+1)/2^s + w/3^s + w/4^s - (w+1)/5^s + 1/6^s + ...)*(1 + 1/2^s - 1/3^s + 1/4^s - 1/5^s - 1/6^s + ...)*(1 + w/2^s - (w+1)/3^s - (w+1)/4^s + w/5^s + 1/6^s + ...)*(1 - (w+1)/2^s - w/3^s + w/4^s + (w+1)/5^s - 1/6^s + ...) = 1 + 2/8^s + 6/29^s + 6/43^s + 3/64^s + 6/71^s + ...;
Column k = 8: (1 + 1/3^s + 1/5^s + 1/7^s + ...)*(1 + 1/3^s - 1/5^s - 1/7^s + ...)*(1 - 1/3^s + 1/5^s - 1/7^s + ...)*(1 - 1/3^s - 1/5^s + 1/7^s + ...) = 1 + 2/9^s + 4/17^s + 2/25^s + 4/41^s + 2/49^s + 4/73^s + 3/81^s + ...;
Column k = 9: (1 + 1/2^s + 1/4^s + 1/5^s + 1/7^s + 1/8^s + ...)*(1 + (w+1)/2^s + w/4^s - w/5^s - (w+1)/7^s - 1/8^s + ...)*(1 + w/2^s - (w+1)/4^s - (w+1)/5^s + w/7^s + 1/8^s + ...)*(1 - 1/2^s + 1/4^s - 1/5^s + 1/7^s - 1/8^s + ...)*(1 - (w+1)/2^s + w/4^s + w/5^s - (w+1)/7^s + 1/8^s + ...)*(1 - w/2^s - (w+1)/4^s + (w+1)/5^s + w/7^s - 1/8^s + ...) = 1 + 6/19^s + 6/37^s + 1/64^s + 6/73^s + ...;
Column k = 10: (1 + 1/3^s + 1/7^s + 1/9^s + ...)*(1 + i/3^s - i/7^s - 1/9^s + ...)*(1 - 1/3^s - 1/7^s + 1/9^s + ...)*(1 - i/3^s + i/7^s - 1/9^s + ...) = 1 + 4/11^s + 4/31^s + 4/41^s + 4/61^s + 4/71^s + 1/81^s + 4/101^s + ...
		

Crossrefs

Columns: A000012 (k=1 and k=2), A033687 (k=3), A008441 (k=4), A378008 (k=5), A097195 (k=6), A378009 (k=7), A378010 (k=8), A378011 (k=9), A378012 (k=10).
Cf. A378006.

Programs

  • PARI
    A378007(n,k) = {
    my(f = factor(k*n+1), res = 1); for(i=1, #f~, my(d = znorder(Mod(f[i,1],k)));
    if(f[i,2] % d != 0, return(0), my(m = f[i,2]/d, r = eulerphi(k)/d); res *= binomial(m+r-1,r-1)));
    res;}

Formula

See A378006.
For odd k, T(2*k,n) = T(k,2*n).

A035184 a(n) = Sum_{d|n} Kronecker(-1, d).

Original entry on oeis.org

1, 2, 0, 3, 2, 0, 0, 4, 1, 4, 0, 0, 2, 0, 0, 5, 2, 2, 0, 6, 0, 0, 0, 0, 3, 4, 0, 0, 2, 0, 0, 6, 0, 4, 0, 3, 2, 0, 0, 8, 2, 0, 0, 0, 2, 0, 0, 0, 1, 6, 0, 6, 2, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 7, 4, 0, 0, 6, 0, 0, 0, 4, 2, 4, 0, 0, 0, 0, 0, 10, 1, 4, 0, 0, 4, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 2, 2, 0, 9, 2, 0, 0, 8, 0
Offset: 1

Views

Author

Keywords

Examples

			G.f. = x + 2*x^2 + 3*x^4 + 2*x^5 + 4*x^8 + x^9 + 4*x^10 + 2*x^13 + 5*x^16 + 2*x^17 + ...
		

Crossrefs

Inverse Moebius transform of A034947.
Sum_{d|n} Kronecker(k, d): A035143..A035181 (k=-47..-9, skipping numbers that are not cubefree), A035182 (k=-7), A192013 (k=-6), A035183 (k=-5), A002654 (k=-4), A002324 (k=-3), A002325 (k=-2), this sequence (k=-1), A000012 (k=0), A000005 (k=1), A035185 (k=2), A035186 (k=3), A001227 (k=4), A035187..A035229 (k=5..47, skipping numbers that are not cubefree).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, KroneckerSymbol[-1, #] &]; Array[a, 105] (* Jean-François Alcover, Dec 02 2015 *)
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1/((1 - X) * (1 - kronecker( -1, p) * X))) [n])}; /* Michael Somos, Jan 05 2012 */
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -1, d)))}; /* Michael Somos, Jan 05 2012 */

Formula

a(n) is multiplicative with a(2^e) = e + 1, a(p^e) = e + 1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4). - Michael Somos, Jan 05 2012
a(4*n + 3) = a(9*n + 3) = a(9*n + 6) = 0. a(4*n + 1) = A008441(n). a(8*n + 1) = A113407(n). a(8*n + 5) = 2 * A053692(n). a(12*n + 1) = A002175(n). a(12*n + 5) = 2 * A121444(n).
Dirichlet g.f.: zeta(s)*beta(s)/(1 - 2^(-s)), where beta is the Dirichlet beta function. - Ralf Stephan, Mar 27 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 = 1.570796... (A019669). - Amiram Eldar, Oct 17 2022

A215472 Expansion of (psi(x) * phi(-x)^4)^2 in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, -14, 81, -238, 322, 0, -429, 82, 0, 2162, -3038, -1134, 2401, 2482, 0, -6958, 3332, 0, 1442, 0, 6561, -4508, -9758, 0, -1918, 18802, 0, 9362, -24638, -19278, 14641, 14756, 0, 0, 6562, 0, -1148, -33998, 26082, -20398, 0, 0, 28083, 49042, 0, -64078, -30268
Offset: 0

Views

Author

Michael Somos, Aug 12 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
This is a member of an infinite family of integer weight level 8 modular forms. g_1 = A008441, g_2 = A002171, g_3 = A000729, g_4 = A215601, g_5 = A215472.

Examples

			1 - 14*x + 81*x^2 - 238*x^3 + 322*x^4 - 429*x^6 + 82*x^7 + 2162*x^9 + ...
q - 14*q^5 + 81*q^9 - 238*q^13 + 322*q^17 - 429*q^25 + 82*q^29 + 2162*q^37 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^14 / QPochhammer[ x^2]^4, {x, 0, n}] (* Michael Somos, Sep 05 2013 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x + A)^7 / eta(x^2 + A)^2 )^2, n))}

Formula

Expansion of q^(-1/4) * eta(q)^14 / eta(q^2)^4 in powers of q.
Expansion of q^(-1/4) * ( eta(q)^4 * eta(q^2)^2 * eta(q^4)^4 + 4 * eta(q^2)^4 * eta(q^4)^2 * eta(q^8)^4 ) in powers of q. - Michael Somos, Sep 05 2013
Euler transform of period 2 sequence [ -14, -10, ...].
a(n) = b(4*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 * p^(2*e) if p == 3 (mod 4), b(p^e) = b(p) * b(p^(e-1)) - p^4 * b(p^(e-2)) otherwise.
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 128 (t/i)^5 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A030212.
a(n) = (-1)^n * A209942(n). a(9*n + 5) = a(9*n + 8) = 0. a(9*n + 2) = 81 * a(n).
a(n) = A030212(4*n + 1). - Michael Somos, Sep 05 2013

A215601 Expansion of phi(-x)^2 * f(-x)^6 + 32 * x * psi(-x)^2 * f(-x^4)^6 in powers of x where phi(), psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 22, -27, -18, -94, 0, 359, -130, 0, 214, -230, -594, -343, 518, 0, 830, -396, 0, 1098, 0, 729, -2068, -1670, 0, 594, 598, 0, -1746, 2002, 486, -1331, 5148, 0, 0, -1606, 0, -2860, -3514, 2538, 286, 0, 0, -1873, -4082, 0, 3942, 4708, 0, 5362, 1174, 0, -5060
Offset: 0

Views

Author

Michael Somos, Aug 16 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Denoted by g_4(q) in Cynk and Hulek on page 8 as the unique weight 4 Hecke eigenform of level 32 with complex multiplication by i. - Michael Somos, Aug 24 2012
This is a member of an infinite family of integer weight modular forms. g_1 = A008441, g_2 = A002171, g_3 = A000729, g_4 = A215601, g_5 = A215472.

Examples

			G.f. = 1 + 22*x - 27*x^2 - 18*x^3 - 94*x^4 + 359*x^6 - 130*x^7 + 214*x^9 - 230*x^10 + ..
G.f. = q + 22*q^5 - 27*q^9 - 18*q^13 - 94*q^17 + 359*q^25 - 130*q^29 + 214*q^37 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x]^5 / QPochhammer[ x^2])^2 + 32 x (QPochhammer[ x] QPochhammer[ x^4]^4 / QPochhammer[ x^2])^2, {x, 0, n}]; (* Michael Somos, Jan 11 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x + A)^5 / eta(x^2 + A) )^2 + 32 * x * ( eta(x + A) * eta(x^4 + A)^4 / eta(x^2 + A) )^2, n))};
    
  • PARI
    {a(n) = local(A, p, e, x, y, a0, a1, w=3); if( n<0, 0, n = 4*n + 1; A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 0, if( p%4==3, if( e%2, 0, (-p)^(w*e/2)), y=-sum( i=0, p-1, kronecker( i^3-i, p)); a0=2; a1=y; for( i=2, w, x=y*a1 -p*a0; a0=a1; a1=x); y=a1; a0=1; a1=y; for( i=2, e, x=y*a1 -p^w*a0; a0=a1; a1=x); a1)))))};

Formula

Expansion of q^(-1/4) * (eta(q)^5 / eta(q^2))^2 + 32 * (eta(q) * eta(q^4)^4 / eta(q^2))^2 in powers of q.
a(n) = b(4*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 * p^(2*e) if p == 3 (mod 4), b(p^e) = b(p) * b(p^(e-1)) - p^3 * b(p^(e-2)) otherwise.
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 2^10 (t/i)^4 f(t) where q = exp(2 Pi i t).
a(9*n + 5) = a(9*n + 8) = 0. a(9*n + 2) = -27 * a(n). a(n) = A215600(2*n).

A374900 Expansion of Sum_{k in Z} x^k / (1 - x^(7*k+1)).

Original entry on oeis.org

1, 2, 2, 2, 2, 1, 2, 2, 2, 3, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 1, 4, 2, 2, 2, 0, 2, 2, 3, 4, 2, 0, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 0, 2, 2, 0, 2, 2, 2, 3, 2, 0, 2, 2, 4, 0, 2, 2, 2, 2, 2, 3, 2, 0, 2, 4, 2, 2, 0, 0, 2, 2, 2, 4, 2, 0, 2, 2, 2, 2, 2, 0, 2, 4, 4, 2, 2, 0, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Seiichi Manyama, Jul 31 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=110, x='x+O('x^N)); Vec(sum(k=-N, N, x^k/(1-x^(7*k+1))))
    
  • PARI
    my(N=110, x='x+O('x^N)); Vec(prod(k=1, N, (1-x^(7*k))^2*(1-x^(7*k-2))*(1-x^(7*k-5))/((1-x^(7*k-1))*(1-x^(7*k-6)))^2))

Formula

G.f.: Product_{k>0} (1-x^(7*k))^2 * (1-x^(7*k-2)) * (1-x^(7*k-5)) / ((1-x^(7*k-1)) * (1-x^(7*k-6)))^2.

A129447 Expansion of psi(q) * psi(q^3) * phi(q^3) / phi(q) in powers of q where psi(), phi() are Ramanujan theta functions.

Original entry on oeis.org

1, -1, 2, 0, 1, 0, 2, -2, 2, 0, 0, 0, 3, -1, 2, 0, 0, 0, 2, -2, 2, 0, 2, 0, 1, -2, 2, 0, 0, 0, 2, 0, 4, 0, 0, 0, 2, -3, 0, 0, 1, 0, 4, -2, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, -2, 2, 0, 2, 0, 1, -2, 4, 0, 0, 0, 0, -2, 2, 0, 0, 0, 4, -1, 2, 0, 2, 0, 2, -2, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Apr 16 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x + 2*x^2 + x^4 + 2*x^6 - 2*x^7 + 2*x^8 + 3*x^12 - x^13 + 2*x^14 + ...
G.f. = q - q^3 + 2*q^5 + q^9 + 2*q^13 - 2*q^15 + 2*q^17 + 3*q^25 - q^27 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, Module[ {m = n}, If[ Mod[n, 6] == 1, m = Quotient[ n, 3]; -1, 1] DivisorSum[ 2 m + 1, KroneckerSymbol[ -4, #] &]]]; (* Michael Somos, Nov 11 2015 *)
    a[ n_] := If[ n < 0, 0, Times @@ (Which[# == 1, 1, # == 2, 0, # == 3, (-1)^#2, Mod[#, 4] == 1, #2 + 1, True, Mod[#2 + 1, 2]] & @@@ FactorInteger[2 n + 1])]; (* Michael Somos, Nov 11 2015 *)
  • PARI
    {a(n) = if( n<0, 0, if( n%6==1, n\=3; -1, 1) * sumdiv(2*n + 1, d, kronecker(-4, d)) )};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, n = 2*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p==3, (-1)^e, p%4==1, e+1, 1-e%2 )))};

Formula

Expansion of q^(-1/2) * eta(q) * eta(q^4)^2 * eta(q^6)^7 / (eta(q^2)^3 * eta(q^3)^3 * eta(q^12)^2) in powers of q.
Euler transform of period 12 sequence [ -1, 2, 2, 0, -1, -2, -1, 0, 2, 2, -1, -2, ...].
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = (-1)^e, b(p^e) = e+1 if p == 1 (mod 4), b(p^e) = (1 + (-1)^e)/2 if p == 3 (mod 4).
G.f.: Product_{k>0} (1 + x^(2*k))^2 * (1 - x^(3*k))^2 * (1 + x^(3*k))^5 / ((1 + x^k) * (1 + x^(6*k))^2).
G.f.: Sum_{k in Z} x^(3*k) / (1 + x^(6*k + 1)) = Sum_{k>0} x^(k-1) * (1 - x^(2*k -1))^2 / (1 + x^(6*k - 3)).
abs(a(n)) = A125079(n). a(6*n + 3) = a(6*n + 5) = 0.
a(6*n) = A002175(n). a(2*n) = A008441(n). a(6*n + 1) = - A008441(n). a(6*n + 2) = 2* A121444(n).

A035181 a(n) = Sum_{d|n} Kronecker(-9, d).

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 0, 4, 1, 4, 0, 3, 2, 0, 2, 5, 2, 2, 0, 6, 0, 0, 0, 4, 3, 4, 1, 0, 2, 4, 0, 6, 0, 4, 0, 3, 2, 0, 2, 8, 2, 0, 0, 0, 2, 0, 0, 5, 1, 6, 2, 6, 2, 2, 0, 0, 0, 4, 0, 6, 2, 0, 0, 7, 4, 0, 0, 6, 0, 0, 0, 4, 2, 4, 3, 0, 0, 4, 0, 10, 1, 4, 0, 0, 4, 0, 2, 0, 2, 4, 0, 0, 0, 0, 0, 6, 2, 2, 0, 9, 2, 4, 0, 8, 0
Offset: 1

Views

Author

Keywords

Examples

			x + 2*x^2 + x^3 + 3*x^4 + 2*x^5 + 2*x^6 + 4*x^8 + x^9 + 4*x^10 + 3*x^12 + ...
		

Crossrefs

Sum_{d|n} Kronecker(k, d): A035143..A035181 (k=-47..-9, skipping numbers that are not cubefree), A035182 (k=-7), A192013 (k=-6), A035183 (k=-5), A002654 (k=-4), A002324 (k=-3), A002325 (k=-2), A035184 (k=-1), A000012 (k=0), A000005 (k=1), A035185 (k=2), A035186 (k=3), A001227 (k=4), A035187..A035229 (k=5..47, skipping numbers that are not cubefree).

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ KroneckerSymbol[ -9, d], { d, Divisors[ n]}]] (* Michael Somos, Jun 24 2011 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -9, d)))} \\ Michael Somos, Jun 24 2011
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1 / ((1 - X) * (1 - kronecker( -9, p) * X))) [n])} \\ Michael Somos, Jun 24 2011
    
  • PARI
    {a(n) = local(A, p, e); if( n<0, 0, A = factor(n); prod(k=1, matsize(A)[1], if(p = A[k, 1], e = A[k, 2]; if( p==2, e+1, if( p==3, 1, if( p%4==1, e+1, (1 + (-1)^e)/2))))))} \\ Michael Somos, Jun 24 2011
    
  • PARI
    A035181(n)=sumdivmult(n,d,kronecker(-9,d)) \\ M. F. Hasler, May 08 2018

Formula

From Michael Somos, Jun 24 2011: (Start)
a(n) is multiplicative with a(2^e) = e + 1, a(3^e) = 1, a(p^e) = e + 1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4) and p > 3.
Dirichlet g.f.: zeta(s) * L(chi,s) where chi(n) = Kronecker(-9, n). Sum_{n>0} a(n) / n^s = Product_{p prime} 1 / ((1 - p^-s) * (1 - Kronecker(-9, p) * p^-s)). (End)
a(3*n) = a(n). a(2*n + 1) = A125079(n). a(4*n + 1) = A008441(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/3 = 2.094395... (A019693). - Amiram Eldar, Oct 17 2022
Previous Showing 41-50 of 66 results. Next