A005883
Theta series of square lattice with respect to deep hole.
Original entry on oeis.org
4, 8, 4, 8, 8, 0, 12, 8, 0, 8, 8, 8, 4, 8, 0, 8, 16, 0, 8, 0, 4, 16, 8, 0, 8, 8, 0, 8, 8, 8, 4, 16, 0, 0, 8, 0, 16, 8, 8, 8, 0, 0, 12, 8, 0, 8, 16, 0, 8, 8, 0, 16, 0, 0, 0, 16, 12, 8, 8, 0, 8, 8, 0, 0, 8, 8, 16, 8, 0, 8, 8, 0, 12, 8, 0, 0, 16, 0, 8, 8, 0, 24, 0, 8, 8, 0, 0, 8, 8, 0, 4, 16, 8, 8, 16, 0, 0
Offset: 0
4 + 8*x + 4*x^2 + 8*x^3 + 8*x^4 + 12*x^6 + 8*x^7 + 8*x^9 + 8*x^10 + 8*x^11 + ...
4*q + 8*q^3 + 4*q^5 + 8*q^7 + 8*q^9 + 12*q^13 + 8*q^15 + 8*q^19 + 8*q^21 + ...
Theta = 4*q^(1/2) + 8*q^(5/2) + 4*q^(9/2) + 8*q^(13/2) + 8*q^(17/2) + ...
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 106.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- C. G. J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum, 1829.
-
a[0] = 4; a[n_] := 4*DivisorSum[4n+1, (-1)^Quotient[#, 2]&]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 04 2015, translated from PARI *)
s = 4*(QPochhammer[q^2]^4/QPochhammer[q]^2)+O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 09 2015 *)
-
{a(n) = if( n<0, 0, n = 4*n + 1; 4 * sumdiv(n, d, (-1)^(d\2)))} /* Michael Somos, Oct 31 2006 */
A113406
Half the number of integer solutions to x^2 + 4 * y^2 = n.
Original entry on oeis.org
1, 0, 0, 2, 2, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 4, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 4, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 4, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 6, 2, 0, 0, 4, 0
Offset: 1
x + 2*x^4 + 2*x^5 + 2*x^8 + x^9 + 2*x^13 + 2*x^16 + 2*x^17 + 4*x^20 + ...
- B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 373 Entry 32.
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 120.
-
s = (EllipticTheta[3, 0, q]*EllipticTheta[3, 0, q^4] - 1)/(2 q) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Dec 02 2015 *)
-
{a(n) = if( n<1, 0, qfrep( [1, 0; 0, 4], n)[n])}
-
{a(n) = if( n<1, 0, if( n%4==1, sumdiv( n, d, (-1)^(d\2)), if( n%4==0, 2 * sumdiv( n, d, kronecker( -4, d)))))}
-
{a(n) = local(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], if( p = A[k,1], e = A[k,2]; if( p==2, 2 * (e>1), if( p%4==3, (1 + (-1)^e) / 2, e+1)))))}
A122857
Expansion of (phi(q)^2 + phi(q^3)^2) / 2 in powers of q where phi() is a Ramanujan theta function.
Original entry on oeis.org
1, 2, 2, 2, 2, 4, 2, 0, 2, 2, 4, 0, 2, 4, 0, 4, 2, 4, 2, 0, 4, 0, 0, 0, 2, 6, 4, 2, 0, 4, 4, 0, 2, 0, 4, 0, 2, 4, 0, 4, 4, 4, 0, 0, 0, 4, 0, 0, 2, 2, 6, 4, 4, 4, 2, 0, 0, 0, 4, 0, 4, 4, 0, 0, 2, 8, 0, 0, 4, 0, 0, 0, 2, 4, 4, 6, 0, 0, 4, 0, 4, 2, 4, 0, 0, 8, 0, 4, 0, 4, 4, 0, 0, 0, 0, 0, 2, 4, 2, 0, 6, 4, 4, 0, 4
Offset: 0
G.f. = 1 + 2*q + 2*q^2 + 2*q^3 + 2*q^4 + 4*q^5 + 2*q^6 + 2*q^8 + 2*q^9 + 4*q^10 + ...
- B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 197, Entry 44.
-
a[ n_] := If[ n < 1, Boole[n == 0], 2 DivisorSum[ n, KroneckerSymbol[ -36, #] &]]; (* Michael Somos, Jul 09 2013 *)
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q]^2 + EllipticTheta[ 3, 0, q^3]^2) / 2, {q, 0, n}]; (* Michael Somos, Jul 09 2013 *)
-
{a(n) = if( n<1, n==0, 2 * sumdiv( n, d, kronecker( -36, d)))};
-
{a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); 2 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, 1, p%12<6, e+1, !(e%2) )))};
-
{a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); prod( k=1, matsize(A)[1],
[p, e] = A[k, ]; if( p==2, 1, p==3, 1+e%2*2, p%4==1, e+1, !(e%2) )))};
A378007
Square table read by descending antidiagonals: T(n,k) = A378006(k*n+1,k).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 0, 1, 0, 1, 1, 1, 2, 4, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 0, 2, 0, 0, 2, 1, 1, 1, 0, 4, 0, 1, 0, 3, 0, 1, 1, 1, 4, 6, 2, 6, 2, 4, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 2, 0, 0, 2, 1, 1, 1, 4, 10, 4, 6, 4, 6, 2, 4, 2, 2, 1, 1
Offset: 0
Table starts
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 2, 0, 2, 2, 2, 0, 4, ...
1, 1, 2, 1, 4, 2, 0, 4, 6, 0, ...
1, 1, 0, 2, 1, 2, 0, 2, 0, 4, ...
1, 1, 2, 2, 0, 1, 6, 0, 6, 4, ...
1, 1, 1, 0, 0, 2, 0, 4, 0, 0, ...
1, 1, 2, 3, 4, 2, 6, 2, 0, 4, ...
1, 1, 0, 2, 0, 2, 0, 0, 1, 4, ...
1, 1, 1, 0, 4, 3, 0, 0, 6, 1, ...
1, 1, 2, 2, 0, 0, 3, 4, 0, 0, ...
1, 1, 2, 2, 0, 2, 6, 3, 0, 4, ...
Write w = exp(2*Pi*i/3) = (-1 + sqrt(3)*i)/2.
Column k = 1: 1 + 1/2^s + 1/3^s + 1/4^s + 1/5^s + 1/6^s + 1/7^s + 1/8^s + 1/9^s + 1/10^s + 1/11^s + ...;
Column k = 2: 1 + 1/3^s + 1/5^s + 1/7^s + 1/9^s + 1/11^s + 1/13^s + 1/15^s + 1/17^s + 1/19^s + 1/21^s + ...;
Column k = 3: (1 + 1/2^s + 1/4^s + 1/5^s + ...)*(1 - 1/2^s + 1/4^s - 1/5^s + ...) = 1 + 1/4^s + 2/7^s + 2/13^s + 1/16^s + 2/19^s + 1/25^s + 2/28^s + 2/31^s + ...;
Column k = 4: (1 + 1/3^s + 1/5^s + 1/7^s + ...)*(1 - 1/3^s + 1/5^s - 1/7^s + ...) = 1 + 2/5^s + 1/9^s + 2/13^s + 2/17^s + 3/25^s + 2/29^s + 2/37^s + 2/41^s + ...;
Column k = 5: (1 + 1/2^s + 1/3^s + 1/4^s + ...)*(1 + i/2^s - i/3^s - 1/4^s + ...)*(1 - 1/2^s - 1/3^s + 1/4^s + ...)*(1 - i/2^s + i/3^s - 1/4^s + ...) = 1 + 4/11^s + 1/16^s + 4/31^s + 4/41^s + ...;
Column k = 6: (1 + 1/5^s + 1/7^s + 1/11^s + ...)*(1 - 1/5^s + 1/7^s - 1/11^s + ...) = 1 + 2/7^s + 2/13^s + 2/19^s + 1/25^s + 1/31^s + 2/37^s + 2/43^s + 3/49^s + 2/61^s + ...;
Column k = 7: (1 + 1/2^s + 1/3^s + 1/4^s + 1/5^s + 1/6^s + ...)*(1 + w/2^s + (w+1)/3^s - (w+1)/4^s - w/5^s - 1/6^s + ...)*(1 - (w+1)/2^s + w/3^s + w/4^s - (w+1)/5^s + 1/6^s + ...)*(1 + 1/2^s - 1/3^s + 1/4^s - 1/5^s - 1/6^s + ...)*(1 + w/2^s - (w+1)/3^s - (w+1)/4^s + w/5^s + 1/6^s + ...)*(1 - (w+1)/2^s - w/3^s + w/4^s + (w+1)/5^s - 1/6^s + ...) = 1 + 2/8^s + 6/29^s + 6/43^s + 3/64^s + 6/71^s + ...;
Column k = 8: (1 + 1/3^s + 1/5^s + 1/7^s + ...)*(1 + 1/3^s - 1/5^s - 1/7^s + ...)*(1 - 1/3^s + 1/5^s - 1/7^s + ...)*(1 - 1/3^s - 1/5^s + 1/7^s + ...) = 1 + 2/9^s + 4/17^s + 2/25^s + 4/41^s + 2/49^s + 4/73^s + 3/81^s + ...;
Column k = 9: (1 + 1/2^s + 1/4^s + 1/5^s + 1/7^s + 1/8^s + ...)*(1 + (w+1)/2^s + w/4^s - w/5^s - (w+1)/7^s - 1/8^s + ...)*(1 + w/2^s - (w+1)/4^s - (w+1)/5^s + w/7^s + 1/8^s + ...)*(1 - 1/2^s + 1/4^s - 1/5^s + 1/7^s - 1/8^s + ...)*(1 - (w+1)/2^s + w/4^s + w/5^s - (w+1)/7^s + 1/8^s + ...)*(1 - w/2^s - (w+1)/4^s + (w+1)/5^s + w/7^s - 1/8^s + ...) = 1 + 6/19^s + 6/37^s + 1/64^s + 6/73^s + ...;
Column k = 10: (1 + 1/3^s + 1/7^s + 1/9^s + ...)*(1 + i/3^s - i/7^s - 1/9^s + ...)*(1 - 1/3^s - 1/7^s + 1/9^s + ...)*(1 - i/3^s + i/7^s - 1/9^s + ...) = 1 + 4/11^s + 4/31^s + 4/41^s + 4/61^s + 4/71^s + 1/81^s + 4/101^s + ...
-
A378007(n,k) = {
my(f = factor(k*n+1), res = 1); for(i=1, #f~, my(d = znorder(Mod(f[i,1],k)));
if(f[i,2] % d != 0, return(0), my(m = f[i,2]/d, r = eulerphi(k)/d); res *= binomial(m+r-1,r-1)));
res;}
A035184
a(n) = Sum_{d|n} Kronecker(-1, d).
Original entry on oeis.org
1, 2, 0, 3, 2, 0, 0, 4, 1, 4, 0, 0, 2, 0, 0, 5, 2, 2, 0, 6, 0, 0, 0, 0, 3, 4, 0, 0, 2, 0, 0, 6, 0, 4, 0, 3, 2, 0, 0, 8, 2, 0, 0, 0, 2, 0, 0, 0, 1, 6, 0, 6, 2, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 7, 4, 0, 0, 6, 0, 0, 0, 4, 2, 4, 0, 0, 0, 0, 0, 10, 1, 4, 0, 0, 4, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 2, 2, 0, 9, 2, 0, 0, 8, 0
Offset: 1
G.f. = x + 2*x^2 + 3*x^4 + 2*x^5 + 4*x^8 + x^9 + 4*x^10 + 2*x^13 + 5*x^16 + 2*x^17 + ...
Inverse Moebius transform of
A034947.
Sum_{d|n} Kronecker(k, d):
A035143..
A035181 (k=-47..-9, skipping numbers that are not cubefree),
A035182 (k=-7),
A192013 (k=-6),
A035183 (k=-5),
A002654 (k=-4),
A002324 (k=-3),
A002325 (k=-2), this sequence (k=-1),
A000012 (k=0),
A000005 (k=1),
A035185 (k=2),
A035186 (k=3),
A001227 (k=4),
A035187..
A035229 (k=5..47, skipping numbers that are not cubefree).
-
a[n_] := DivisorSum[n, KroneckerSymbol[-1, #] &]; Array[a, 105] (* Jean-François Alcover, Dec 02 2015 *)
-
{a(n) = if( n<1, 0, direuler( p=2, n, 1/((1 - X) * (1 - kronecker( -1, p) * X))) [n])}; /* Michael Somos, Jan 05 2012 */
-
{a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -1, d)))}; /* Michael Somos, Jan 05 2012 */
A215472
Expansion of (psi(x) * phi(-x)^4)^2 in powers of x where phi(), psi() are Ramanujan theta functions.
Original entry on oeis.org
1, -14, 81, -238, 322, 0, -429, 82, 0, 2162, -3038, -1134, 2401, 2482, 0, -6958, 3332, 0, 1442, 0, 6561, -4508, -9758, 0, -1918, 18802, 0, 9362, -24638, -19278, 14641, 14756, 0, 0, 6562, 0, -1148, -33998, 26082, -20398, 0, 0, 28083, 49042, 0, -64078, -30268
Offset: 0
1 - 14*x + 81*x^2 - 238*x^3 + 322*x^4 - 429*x^6 + 82*x^7 + 2162*x^9 + ...
q - 14*q^5 + 81*q^9 - 238*q^13 + 322*q^17 - 429*q^25 + 82*q^29 + 2162*q^37 + ...
-
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^14 / QPochhammer[ x^2]^4, {x, 0, n}] (* Michael Somos, Sep 05 2013 *)
-
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x + A)^7 / eta(x^2 + A)^2 )^2, n))}
A215601
Expansion of phi(-x)^2 * f(-x)^6 + 32 * x * psi(-x)^2 * f(-x^4)^6 in powers of x where phi(), psi(), f() are Ramanujan theta functions.
Original entry on oeis.org
1, 22, -27, -18, -94, 0, 359, -130, 0, 214, -230, -594, -343, 518, 0, 830, -396, 0, 1098, 0, 729, -2068, -1670, 0, 594, 598, 0, -1746, 2002, 486, -1331, 5148, 0, 0, -1606, 0, -2860, -3514, 2538, 286, 0, 0, -1873, -4082, 0, 3942, 4708, 0, 5362, 1174, 0, -5060
Offset: 0
G.f. = 1 + 22*x - 27*x^2 - 18*x^3 - 94*x^4 + 359*x^6 - 130*x^7 + 214*x^9 - 230*x^10 + ..
G.f. = q + 22*q^5 - 27*q^9 - 18*q^13 - 94*q^17 + 359*q^25 - 130*q^29 + 214*q^37 + ...
-
a[ n_] := SeriesCoefficient[ (QPochhammer[ x]^5 / QPochhammer[ x^2])^2 + 32 x (QPochhammer[ x] QPochhammer[ x^4]^4 / QPochhammer[ x^2])^2, {x, 0, n}]; (* Michael Somos, Jan 11 2015 *)
-
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x + A)^5 / eta(x^2 + A) )^2 + 32 * x * ( eta(x + A) * eta(x^4 + A)^4 / eta(x^2 + A) )^2, n))};
-
{a(n) = local(A, p, e, x, y, a0, a1, w=3); if( n<0, 0, n = 4*n + 1; A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 0, if( p%4==3, if( e%2, 0, (-p)^(w*e/2)), y=-sum( i=0, p-1, kronecker( i^3-i, p)); a0=2; a1=y; for( i=2, w, x=y*a1 -p*a0; a0=a1; a1=x); y=a1; a0=1; a1=y; for( i=2, e, x=y*a1 -p^w*a0; a0=a1; a1=x); a1)))))};
A374900
Expansion of Sum_{k in Z} x^k / (1 - x^(7*k+1)).
Original entry on oeis.org
1, 2, 2, 2, 2, 1, 2, 2, 2, 3, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 1, 4, 2, 2, 2, 0, 2, 2, 3, 4, 2, 0, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 0, 2, 2, 0, 2, 2, 2, 3, 2, 0, 2, 2, 4, 0, 2, 2, 2, 2, 2, 3, 2, 0, 2, 4, 2, 2, 0, 0, 2, 2, 2, 4, 2, 0, 2, 2, 2, 2, 2, 0, 2, 4, 4, 2, 2, 0, 2, 2, 2, 2, 2
Offset: 0
-
my(N=110, x='x+O('x^N)); Vec(sum(k=-N, N, x^k/(1-x^(7*k+1))))
-
my(N=110, x='x+O('x^N)); Vec(prod(k=1, N, (1-x^(7*k))^2*(1-x^(7*k-2))*(1-x^(7*k-5))/((1-x^(7*k-1))*(1-x^(7*k-6)))^2))
A129447
Expansion of psi(q) * psi(q^3) * phi(q^3) / phi(q) in powers of q where psi(), phi() are Ramanujan theta functions.
Original entry on oeis.org
1, -1, 2, 0, 1, 0, 2, -2, 2, 0, 0, 0, 3, -1, 2, 0, 0, 0, 2, -2, 2, 0, 2, 0, 1, -2, 2, 0, 0, 0, 2, 0, 4, 0, 0, 0, 2, -3, 0, 0, 1, 0, 4, -2, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, -2, 2, 0, 2, 0, 1, -2, 4, 0, 0, 0, 0, -2, 2, 0, 0, 0, 4, -1, 2, 0, 2, 0, 2, -2, 0, 0, 0
Offset: 0
G.f. = 1 - x + 2*x^2 + x^4 + 2*x^6 - 2*x^7 + 2*x^8 + 3*x^12 - x^13 + 2*x^14 + ...
G.f. = q - q^3 + 2*q^5 + q^9 + 2*q^13 - 2*q^15 + 2*q^17 + 3*q^25 - q^27 + ...
-
a[ n_] := If[ n < 0, 0, Module[ {m = n}, If[ Mod[n, 6] == 1, m = Quotient[ n, 3]; -1, 1] DivisorSum[ 2 m + 1, KroneckerSymbol[ -4, #] &]]]; (* Michael Somos, Nov 11 2015 *)
a[ n_] := If[ n < 0, 0, Times @@ (Which[# == 1, 1, # == 2, 0, # == 3, (-1)^#2, Mod[#, 4] == 1, #2 + 1, True, Mod[#2 + 1, 2]] & @@@ FactorInteger[2 n + 1])]; (* Michael Somos, Nov 11 2015 *)
-
{a(n) = if( n<0, 0, if( n%6==1, n\=3; -1, 1) * sumdiv(2*n + 1, d, kronecker(-4, d)) )};
-
{a(n) = my(A, p, e); if( n<0, 0, n = 2*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p==3, (-1)^e, p%4==1, e+1, 1-e%2 )))};
A035181
a(n) = Sum_{d|n} Kronecker(-9, d).
Original entry on oeis.org
1, 2, 1, 3, 2, 2, 0, 4, 1, 4, 0, 3, 2, 0, 2, 5, 2, 2, 0, 6, 0, 0, 0, 4, 3, 4, 1, 0, 2, 4, 0, 6, 0, 4, 0, 3, 2, 0, 2, 8, 2, 0, 0, 0, 2, 0, 0, 5, 1, 6, 2, 6, 2, 2, 0, 0, 0, 4, 0, 6, 2, 0, 0, 7, 4, 0, 0, 6, 0, 0, 0, 4, 2, 4, 3, 0, 0, 4, 0, 10, 1, 4, 0, 0, 4, 0, 2, 0, 2, 4, 0, 0, 0, 0, 0, 6, 2, 2, 0, 9, 2, 4, 0, 8, 0
Offset: 1
x + 2*x^2 + x^3 + 3*x^4 + 2*x^5 + 2*x^6 + 4*x^8 + x^9 + 4*x^10 + 3*x^12 + ...
Sum_{d|n} Kronecker(k, d):
A035143..
A035181 (k=-47..-9, skipping numbers that are not cubefree),
A035182 (k=-7),
A192013 (k=-6),
A035183 (k=-5),
A002654 (k=-4),
A002324 (k=-3),
A002325 (k=-2),
A035184 (k=-1),
A000012 (k=0),
A000005 (k=1),
A035185 (k=2),
A035186 (k=3),
A001227 (k=4),
A035187..
A035229 (k=5..47, skipping numbers that are not cubefree).
-
a[ n_] := If[ n < 1, 0, Sum[ KroneckerSymbol[ -9, d], { d, Divisors[ n]}]] (* Michael Somos, Jun 24 2011 *)
-
{a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -9, d)))} \\ Michael Somos, Jun 24 2011
-
{a(n) = if( n<1, 0, direuler( p=2, n, 1 / ((1 - X) * (1 - kronecker( -9, p) * X))) [n])} \\ Michael Somos, Jun 24 2011
-
{a(n) = local(A, p, e); if( n<0, 0, A = factor(n); prod(k=1, matsize(A)[1], if(p = A[k, 1], e = A[k, 2]; if( p==2, e+1, if( p==3, 1, if( p%4==1, e+1, (1 + (-1)^e)/2))))))} \\ Michael Somos, Jun 24 2011
-
A035181(n)=sumdivmult(n,d,kronecker(-9,d)) \\ M. F. Hasler, May 08 2018
Comments