cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 43 results. Next

A168627 a(n) = n^6*(n^5 + 1)/2.

Original entry on oeis.org

0, 1, 1056, 88938, 2099200, 24421875, 181421856, 988722196, 4295098368, 15690795525, 50000500000, 142656721086, 371505678336, 896082610423, 2024786349600, 4324883625000, 8796101410816, 17135960222601
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Comments

Number of unoriented rows of length 11 using up to n colors. For a(0)=0, there are no rows using no colors. For a(1)=1, there is one row using that one color for all positions. For a(2)=1056, there are 2^11=2048 oriented arrangements of two colors. Of these, 2^6=64 are achiral. That leaves (2048-64)/2=992 chiral pairs. Adding achiral and chiral, we get 1056. - Robert A. Russell, Nov 13 2018

Crossrefs

Row 11 of A277504.
Cf. A008455 (oriented), A001014 (achiral).

Programs

  • GAP
    List([0..30], n -> n^6*(1 + n^5)/2); # G. C. Greubel, Nov 15 2018
  • Magma
    [n^6*(1 + n^5)/2: n in [0..30]]; // G. C. Greubel, Nov 15 2018
    
  • Mathematica
    Table[n^6*(n^5+1)/2, {n, 0, 30}] (* G. C. Greubel, Jul 27 2016 *)
    LinearRecurrence[{12,-66,220,-495,792,-924,792,-495,220,-66,12,-1},{0,1,1056,88938,2099200,24421875,181421856,988722196,4295098368,15690795525,50000500000,142656721086},20] (* Harvey P. Dale, Nov 21 2024 *)
  • PARI
    vector(30, n, n--; n^6*(1 + n^5)/2) \\ G. C. Greubel, Nov 15 2018
    
  • Sage
    [n^6*(1 + n^5)/2 for n in range(30)] # G. C. Greubel, Nov 15 2018
    

Formula

From G. C. Greubel, Jul 27 2016: (Start)
G.f.: x*(1 + 1044*x + 76332*x^2 + 1101420*x^3 + 4869558*x^4 + 7862124*x^5 + 4868556*x^6 + 1102068*x^7 + 76305*x^8 + 992*x^9)/(1 - x)^12.
E.g.f.: (1/2)* x *(2 + 1054*x + 28591*x^2 + 145815*x^3 + 246745*x^4 + 179488*x^5 + 63987*x^6 + 11880*x^7 + 1155*x^8 + 55*x^9 + x^10)*exp(x). (End)
From Robert A. Russell, Nov 13 2018: (Start)
a(n) = (A008455(n) + A001014(n)) / 2 = (n^11 + n^6) / 2.
G.f.: (Sum_{j=1..11} S2(11,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..6} S2(6,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f.: x*Sum_{k=0..10} A145882(11,k) * x^k / (1-x)^12.
E.g.f.: (Sum_{k=1..11} S2(11,k)*x^k + Sum_{k=1..6} S2(6,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
For n>11, a(n) = Sum_{j=1..12} -binomial(j-13,j) * a(n-j). (End)

A004908 Numbers that are the sum of at most 2 positive 11th powers.

Original entry on oeis.org

0, 1, 2, 2048, 2049, 4096, 177147, 177148, 179195, 354294, 4194304, 4194305, 4196352, 4371451, 8388608, 48828125, 48828126, 48830173, 49005272, 53022429, 97656250, 362797056, 362797057, 362799104, 362974203, 366991360, 411625181
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A008455 (11th powers), A004813 (sum of 2).

Programs

  • PARI
    lista(nn) = setbinop((x,y)->x^11+y^11, [0..nn]); \\ Michel Marcus, Jul 02 2025

A016775 (3*n)^11.

Original entry on oeis.org

0, 177147, 362797056, 31381059609, 743008370688, 8649755859375, 64268410079232, 350277500542221, 1521681143169024, 5559060566555523, 17714700000000000, 50542106513726817, 131621703842267136, 317475837322472439, 717368321110468608
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A008455 (11th Powers), A008585 (3n).

Programs

  • Magma
    [(3*n)^11: n in [0..20]]; // Vincenzo Librandi, May 09 2011
    
  • Maple
    A016775:=n->(3*n)^11: seq(A016775(n), n=0..20); # Wesley Ivan Hurt, Oct 28 2014
  • Mathematica
    (3 Range[0, 20])^11 (* or *)
    CoefficientList[Series[177147 (x + 2036 x^2 + 152637 x^3 + 2203488 x^4 + 9738114 x^5 + 15724248 x^6 + 9738114 x^7 + 2203488 x^8 + 152637 x^9 + 2036 x^10 + x^11)/(x - 1)^12, {x, 0, 30}], x] (* Wesley Ivan Hurt, Oct 28 2014 *)
  • Maxima
    A016775(n):=(3*n)^11$
    makelist(A016775(n),n,0,20); /* Martin Ettl, Nov 12 2012 */

Formula

From Wesley Ivan Hurt, Oct 28 2014: (Start)
G.f.: 177147*(x + 2036*x^2 + 152637*x^3 + 2203488*x^4 + 9738114*x^5 + 15724248*x^6 + 9738114*x^7 + 2203488*x^8 + 152637*x^9 + 2036*x^10 + x^11) / (x - 1)^12.
a(n) = 12*a(n-1)-66*a(n-2)+220*a(n-3)-495*a(n-4)+792*a(n-5)-924*a(n-6)+792*a(n-7)-495*a(n-8)+220*a(n-9)-66*a(n-10)+12*a(n-11)-a(n-12).
a(n) = (3*n)^11 = 177147 * A008455(n) = A008455(A008585(n)). (End)

A016919 a(n) = (6*n)^11.

Original entry on oeis.org

0, 362797056, 743008370688, 64268410079232, 1521681143169024, 17714700000000000, 131621703842267136, 717368321110468608, 3116402981210161152, 11384956040305711104, 36279705600000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(x) = 362797056*(x-1)*(x^10 - 10*x^9 + 45*x^8 - 120*x^7 + 210*x^6 - 252*x^5 + 210*x^4 - 120*x^3 + 45*x^2 - 10*x + 1). - Harvey P. Dale, Dec 22 2013

A017087 a(n) = (8*n + 1)^11.

Original entry on oeis.org

1, 31381059609, 34271896307633, 2384185791015625, 50542106513726817, 550329031716248441, 3909821048582988049, 20635899893042801193, 87507831740087890625, 313726685568359708377, 984770902183611232881
Offset: 0

Views

Author

Keywords

Comments

Composition of A008455(n) and A017077(n). - Wesley Ivan Hurt, Jul 17 2025

Crossrefs

Programs

  • Magma
    [(8*n+1)^11: n in [0..20]]; // Vincenzo Librandi, Jul 11 2011
    
  • Mathematica
    (8*Range[0,10]+1)^11 (* or *) LinearRecurrence[{12,-66,220,-495,792,-924,792,-495,220,-66,12,-1},{1,31381059609,34271896307633,2384185791015625,50542106513726817,550329031716248441,3909821048582988049,20635899893042801193,87507831740087890625,313726685568359708377,984770902183611232881,2775173073766990340489},20] (* Harvey P. Dale, Sep 08 2017 *)
    CoefficientList[Series[(1 + 31381059597*x + 33895323592391*x^2 + 1974994185258003*x^3 + 24186918344729610*x^4 + 93655732195384290*x^5 + 134070558743608110*x^6 + 73557591075608934*x^7 + 14545208676272997*x^8 + 849143191166465*x^9 + 8626027938459*x^10 + 1977326743*x^11)/(-1 + x)^12, {x, 0, 15}], x] (* Wesley Ivan Hurt, Jul 17 2025 *)
  • PARI
    a(n)=(8*n+1)^11 \\ Charles R Greathouse IV, Aug 11 2014

Formula

From Wesley Ivan Hurt, Jul 17 2025: (Start)
a(n) = 12*a(n-1) - 66*a(n-2) + 220*a(n-3) - 495*a(n-4) + 792*a(n-5) - 924*a(n-6) + 792*a(n-7) - 495*a(n-8) + 220*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12).
G.f.: (1 + 31381059597*x + 33895323592391*x^2 + 1974994185258003*x^3 +24186918344729610*x^4 + 93655732195384290*x^5 + 134070558743608110*x^6 + 73557591075608934*x^7 + 14545208676272997*x^8 + 849143191166465*x^9 + 8626027938459*x^10 + 1977326743*x^11)/(-1 + x)^12.
a(n) = A008455(A017077(n)). (End)

A017171 a(n) = (9*n)^11.

Original entry on oeis.org

0, 31381059609, 64268410079232, 5559060566555523, 131621703842267136, 1532278301220703125, 11384956040305711104, 62050608388552823487, 269561249468963094528, 984770902183611232881, 3138105960900000000000
Offset: 0

Views

Author

Keywords

Comments

Composition of A008455(n) and A008591(n). - Wesley Ivan Hurt, Jul 17 2025

Crossrefs

Programs

  • Magma
    [(9*n)^11: n in [0..15]]; // Vincenzo Librandi, Jul 22 2011
  • Mathematica
    (9*Range[0,20])^11 (* Harvey P. Dale, Apr 06 2019 *)
    CoefficientList[Series[31381059609*x*(1 + 2036*x + 152637*x^2 + 2203488*x^3 + 9738114*x^4 + 15724248*x^5 + 9738114*x^6 + 2203488*x^7 + 152637*x^8 + 2036*x^9 + x^10)/(-1 + x)^12, {x, 0, 15}], x] (* Wesley Ivan Hurt, Jul 17 2025 *)

Formula

a(n) = 31381059609*A008455(n). - R. J. Mathar, Jul 07 2017
From Wesley Ivan Hurt, Jul 17 2025: (Start)
a(n) = 12*a(n-1) - 66*a(n-2) + 220*a(n-3) - 495*a(n-4) + 792*a(n-5) - 924*a(n-6) + 792*a(n-7) - 495*a(n-8) + 220*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12).
G.f.: 31381059609*x*(1 + 2036*x + 152637*x^2 + 2203488*x^3 + 9738114*x^4 + 15724248*x^5 + 9738114*x^6 + 2203488*x^7 + 152637*x^8 + 2036*x^9 + x^10)/(-1 + x)^12.
a(n) = A008455(A008591(n)). (End)

A017267 a(n) = (9*n + 8)^11.

Original entry on oeis.org

8589934592, 34271896307633, 3670344486987776, 96549157373046875, 1196683881290399744, 9269035929372191597, 52036560683837093888, 231122292121701565271, 858993459200000000000, 2775173073766990340489
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A008455 (n^11), A017257 (9*n+8).

Programs

  • Magma
    [(9*n+8)^11: n in [0..10]]; // Vincenzo Librandi, Jul 28 2011
  • Mathematica
    (9*Range[0,30]+8)^11 (* or *) LinearRecurrence[ {12,-66,220,-495,792,-924,792,-495,220,-66,12,-1},{8589934592,34271896307633,3670344486987776,96549157373046875,1196683881290399744,9269035929372191597,52036560683837093888,231122292121701565271,858993459200000000000,2775173073766990340489,8007313507497959524352,21048519522998348950643},30] (* Harvey P. Dale, Oct 21 2013 *)

Formula

a(n) = 12*a(n-1) - 66*a(n-2) + 220*a(n-3) - 495*a(n-4) + 792*a(n-5) - 924*a(n-6) + 792*a(n-7) - 495*a(n-8) + 220*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12); a(0)=8589934592, a(1)=34271896307633, a(2)=3670344486987776, a(3)=96549157373046875, a(4)=1196683881290399744, a(5)=9269035929372191597, a(6)=52036560683837093888, a(7)=231122292121701565271, a(8)=858993459200000000000, a(9)=2775173073766990340489, a(10)=8007313507497959524352, a(11)=21048519522998348950643. - Harvey P. Dale, Oct 21 2013

A017291 a(n) = (10*n + 1)^11.

Original entry on oeis.org

1, 285311670611, 350277500542221, 25408476896404831, 550329031716248441, 6071163615208263051, 43513917611435838661, 231122292121701565271, 984770902183611232881, 3543686674874777831491, 11156683466653165551101
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A008455 (n^11), A017281 (10n+1).

Programs

A017543 a(n) = (12*n + 1)^11.

Original entry on oeis.org

1, 1792160394037, 2384185791015625, 177917621779460413, 3909821048582988049, 43513917611435838661, 313726685568359708377, 1673432436896142578125, 7153014030880804126753, 25804264053054077850709, 81402749386839761113321, 230339304218442143770717
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A008455 (n^11), A017533 (12n+1).

Programs

Formula

a(n) = A008455(A017533(n)). - Michel Marcus, Jul 28 2015
a(n) = Sum_{k=0..11} binomial(11,k)*(12*n)^k. - Robert Israel, Jul 28 2015

A017627 a(n) = (12*n+8)^11.

Original entry on oeis.org

8589934592, 204800000000000, 36028797018963968, 1196683881290399744, 16985107389382393856, 143746751770690322432, 858993459200000000000, 3996373778857415671808, 15394540563150776827904, 51172646912339021398016
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A008455(A017617(n)). - Michel Marcus, Apr 19 2017
Previous Showing 31-40 of 43 results. Next