cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A369609 Irregular triangle read by rows where row n lists k <= n such that A007947(k) = A007947(n).

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 7, 2, 4, 8, 3, 9, 10, 11, 6, 12, 13, 14, 15, 2, 4, 8, 16, 17, 6, 12, 18, 19, 10, 20, 21, 22, 23, 6, 12, 18, 24, 5, 25, 26, 3, 9, 27, 14, 28, 29, 30, 31, 2, 4, 8, 16, 32, 33, 34, 35, 6, 12, 18, 24, 36, 37, 38, 39, 10, 20, 40, 41, 42, 43, 22, 44
Offset: 1

Views

Author

Michael De Vlieger, May 09 2024

Keywords

Comments

Differs from A284318 after 27 terms.
Let rad(x) = A007947(x).
Let T(n,k) be the k-th term of row n in this sequence.
Define S(n,k) to be the k-th term in row n of A162306.
T(n,k) = rad(n) * S(n,k), k <= A008479(n).
The number n appears as the last term in row n.

Examples

			First rows of the triangle:
  1;
  2;
  3;
  2, 4;
  5;
  6;
  7;
  2, 4, 8;
  3, 9;
  10;
  11;
  6, 12;
  13;
  14;
  15;
  2, 4, 8, 16;
  17;
  6, 12, 18;
  etc.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := f[x] = Times @@ FactorInteger[x][[All, 1]]; Flatten@ Table[r = f[n]; Select[Range[n], f[#] == r &], {n, 44}]
  • PARI
    rad(n) = factorback(factorint(n)[, 1]); \\ A007947
    row(n) = my(r=rad(n)); select(x->(rad(x) == r), [1..n]); \\ Michel Marcus, May 11 2024

Formula

Row n of this sequence contains row n of A284318.
Length of row n is A008479(n).
For squarefree n, row n = {n}.
For prime power n = p^m, row n = { p^j : j = 1..m }.

A067003 Number of numbers <= n with same number of distinct prime factors as n.

Original entry on oeis.org

1, 1, 2, 3, 4, 1, 5, 6, 7, 2, 8, 3, 9, 4, 5, 10, 11, 6, 12, 7, 8, 9, 13, 10, 14, 11, 15, 12, 16, 1, 17, 18, 13, 14, 15, 16, 19, 17, 18, 19, 20, 2, 21, 20, 21, 22, 22, 23, 23, 24, 25, 26, 24, 27, 28, 29, 30, 31, 25, 3, 26, 32, 33, 27, 34, 4, 28, 35, 36, 5, 29, 37, 30, 38, 39, 40, 41
Offset: 1

Views

Author

Henry Bottomley, Dec 21 2001

Keywords

Examples

			a(11)=8 since 2,3,4,5,7,8,9,11 each have one distinct prime factor. a(12)=3 since 6,10,12 each have two distinct prime factors.
From _Gus Wiseman_, Dec 28 2018: (Start)
Column n lists the a(n) positive integers less than or equal to n with the same number of distinct prime factors as n:
  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20
  ---------------------------------------------------------------------
  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20
        2  3  4     5  7  8  6   9   10  11  12  14  13  16  15  17  18
           2  3     4  5  7      8   6   9   10  12  11  13  14  16  15
              2     3  4  5      7       8   6   10  9   11  12  13  14
                    2  3  4      5       7       6   8   9   10  11  12
                       2  3      4       5           7   8   6   9   10
                          2      3       4           5   7       8   6
                                 2       3           4   5       7
                                         2           3   4       5
                                                     2   3       4
                                                         2       3
                                                                 2
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Range[n],PrimeNu[#]==PrimeNu[n]&]],{n,100}] (* Gus Wiseman, Dec 28 2018 *)
  • PARI
    a(n) = my(nb = #factor(n)~); sum(k=1, n, #factor(k)~ == nb); \\ Michel Marcus, Jul 13 2019

Formula

a(A002110(n)) = 1.

A284311 Array T(n,k) read by antidiagonals (downward): T(1,k) = A005117(k+1) (squarefree numbers > 1); for n > 1, columns are nonsquarefree numbers (in ascending order) with exactly the same prime factors as T(1,k).

Original entry on oeis.org

2, 3, 4, 5, 9, 8, 6, 25, 27, 16, 7, 12, 125, 81, 32, 10, 49, 18, 625, 243, 64, 11, 20, 343, 24, 3125, 729, 128, 13, 121, 40, 2401, 36, 15625, 2187, 256, 14, 169, 1331, 50, 16807, 48, 78125, 6561, 512, 15, 28, 2197, 14641, 80, 117649, 54, 390625, 19683, 1024
Offset: 1

Views

Author

Bob Selcoe, Mar 24 2017

Keywords

Comments

A permutation of the natural numbers > 1.
T(1,k)= A005117(m) with m > 1; terms in column k = T(1,k) * A162306(T(1,k)) only not bounded by T(1,k). Let T(1,k) = b. Terms in column k are multiples of b and numbers c such that c | b^e with e >= 0. Alternatively, terms in column k are multiples bc with c those numbers whose prime divisors p also divide b. - Michael De Vlieger, Mar 25 2017

Examples

			Array starts:
    2    3     5  6      7  10       11        13  14  15
    4    9    25 12     49  20      121       169  28  45
    8   27   125 18    343  40     1331      2197  56  75
   16   81   625 24   2401  50    14641    371293  98 135
   32  243  3125 36  16807  80   161051   4826809 112 225
   64  729 15625 48 117649 100  1771561  62748517 196 375
  128 2187 78125 54 823543 160 19487171 815730721 224 405
Column 6 is: T(1,6) = 2*5; T(2,6) = 2^2*5; T(3,6) = 2^3*5; T(4,6) = 2*5^2; T(5,6) = 2^4*5, etc.
		

Crossrefs

Cf. A005117 (squarefree numbers), A033845 (column 4), columns 1,2,3,5 are powers of primes, A033846 (column 6), A033847 (column 9), A033849 (column 10).
The columns that are powers of primes have indices A071403(n) - 1. - Michel Marcus, Mar 24 2017
See also A007947; the k-th column of the array corresponds to the numbers with radical A005117(k+1). - Rémy Sigrist, Mar 24 2017
Cf. A284457 (this sequence read by antidiagonals upwards), A285321 (a similar array, but columns come in different order).
Cf. A065642.
Cf. A008479 (index of the row where n is located), A285329 (of the column).

Programs

  • Mathematica
    f[n_, k_: 1] := Block[{c = 0, sgn = Sign[k], sf}, sf = n + sgn; While[c < Abs[k], While[! SquareFreeQ@ sf, If[sgn < 0, sf--, sf++]]; If[sgn < 0, sf--, sf++]; c++]; sf + If[sgn < 0, 1, -1]] (* after Robert G. Wilson v at A005117 *); T[n_, k_] := T[n, k] = Which[And[n == 1, k == 1], 2, k == 1, f@ T[n - 1, k], PrimeQ@ T[n, 1], T[n, 1]^k, True, Module[{j = T[n, k - 1]/T[n, 1] + 1}, While[PowerMod[T[n, 1], j, j] != 0, j++]; j T[n, 1]]]; Table[T[n - k + 1, k], {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Mar 25 2017 *)
  • Scheme
    (define (A284311 n) (A284311bi  (A002260 n) (A004736 n)))
    (define (A284311bi row col) (if (= 1 row) (A005117 (+ 1 col)) (A065642 (A284311bi (- row 1) col))))
    ;; Antti Karttunen, Apr 17 2017

Formula

From Antti Karttunen, Apr 17 2017: (Start)
A(1,k) = A005117(1+k), A(n,k) = A065642(A(n-1,k)).
A(A008479(n), A285329(n)) = n for all n >= 2.
(End)

A284457 Square array whose rows list numbers with the same squarefree kernel (A007947): Transpose of A284311.

Original entry on oeis.org

2, 4, 3, 8, 9, 5, 16, 27, 25, 6, 32, 81, 125, 12, 7, 64, 243, 625, 18, 49, 10, 128, 729, 3125, 24, 343, 20, 11, 256, 2187, 15625, 36, 2401, 40, 121, 13, 512, 6561, 78125, 48, 16807, 50, 1331, 169, 14, 1024, 19683, 390625, 54, 117649, 80, 14641, 2197, 28, 15
Offset: 1

Views

Author

Bob Selcoe, Mar 27 2017

Keywords

Comments

The first column contains the squarefree numbers A005117; each row lists all numbers having the same prime divisors. If T[m,1] is prime then the row contains the powers of that prime. Yields A182944 if only these rows with prime powers (A000961) are kept. - M. F. Hasler, Mar 27 2017
See A284311 for further details.

Examples

			Array starts:
    2    4     8     16      32      64      128
    3    9    27     81     243     729     2187
    5   25   125    625    3125   15625    78125
    6   12    18     24      36      48       54
    7   49   343   2401   16807  117649   823543
   10   20    40     50      80     100      160
   ...
Row 6 is: T[1,6] = 2*5; T[2,6] = 2^2*5; T[3,6] = 2^3*5; T[4,6] = 2*5^2; T[5,6] = 2^4*5, etc.
		

Crossrefs

Cf. A008479 (index of the column where n is located), A285329 (of the row).

Programs

  • Mathematica
    f[n_, k_: 1] := Block[{c = 0, sgn = Sign[k], sf}, sf = n + sgn; While[c < Abs@ k, While[! SquareFreeQ@ sf, If[sgn < 0, sf--, sf++]]; If[sgn < 0, sf--, sf++]; c++]; sf + If[sgn < 0, 1, -1]] (* after Robert G. Wilson v at A005117 *); T[n_, k_] := T[n, k] = Which[And[n == 1, k == 1], 2, k == 1, f@ T[n - 1, k], PrimeQ@ T[n, 1], T[n, 1]^k, True, Module[{j = T[n, k - 1]/T[n, 1] + 1}, While[PowerMod[T[n, 1], j, j] != 0, j++]; j T[n, 1]]]; Table[T[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten
  • PARI
    A284457(m,n)={for(a=2,m^2+1,(core(a)!=a||m--)&&next;m=factor(a)[,1]; for(k=1,9e9,factor(k*a)[,1]==m&&!n--&&return(k*a)))} \\ M. F. Hasler, Mar 27 2017
    
  • Scheme
    (define (A284457 n) (A284311bi (A004736 n) (A002260 n))) ;; For A284311bi, see A284311. - Antti Karttunen, Apr 17 2017

Formula

From Antti Karttunen, Apr 17 2017: (Start)
A(n,1) = A005117(1+n), A(n,k) = A065642(A(n,k-1)). [A "dispersion" of A065642.]
A(A285329(n), A008479(n)) = n for all n >= 2.(End)

Extensions

Edited by M. F. Hasler, Mar 27 2017

A285321 Square array A(1,k) = A019565(k), A(n,k) = A065642(A(n-1,k)), read by descending antidiagonals.

Original entry on oeis.org

2, 3, 4, 6, 9, 8, 5, 12, 27, 16, 10, 25, 18, 81, 32, 15, 20, 125, 24, 243, 64, 30, 45, 40, 625, 36, 729, 128, 7, 60, 75, 50, 3125, 48, 2187, 256, 14, 49, 90, 135, 80, 15625, 54, 6561, 512, 21, 28, 343, 120, 225, 100, 78125, 72, 19683, 1024
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2017

Keywords

Comments

A permutation of the natural numbers > 1.
Otherwise like array A284311, but the columns come in different order.

Examples

			The top left 12x6 corner of the array:
   2,   3,  6,     5,  10,  15,  30,      7,  14,  21,  42,   35
   4,   9, 12,    25,  20,  45,  60,     49,  28,  63,  84,  175
   8,  27, 18,   125,  40,  75,  90,    343,  56, 147, 126,  245
  16,  81, 24,   625,  50, 135, 120,   2401,  98, 189, 168,  875
  32, 243, 36,  3125,  80, 225, 150,  16807, 112, 441, 252, 1225
  64, 729, 48, 15625, 100, 375, 180, 117649, 196, 567, 294, 1715
		

Crossrefs

Transpose: A285322.
Cf. A008479 (index of the row where n is located), A087207 (of the column).
Cf. arrays A284311, A285325, also A285332.

Programs

  • Mathematica
    a065642[n_] := Module[{k}, If[n == 1, Return[1], k = n + 1; While[ EulerPhi[k]/k != EulerPhi[n]/n, k++]]; k];
    A[1, k_] := Times @@ Prime[Flatten[Position[#, 1]]]&[Reverse[ IntegerDigits[k, 2]]];
    A[n_ /; n > 1, k_] := A[n, k] = a065642[A[n - 1, k]];
    Table[A[n - k + 1, k], {n, 1, 10}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Nov 17 2019 *)
  • Python
    from operator import mul
    from sympy import prime, primefactors
    def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1 # This function from Chai Wah Wu
    def a007947(n): return 1 if n<2 else reduce(mul, primefactors(n))
    def a065642(n):
        if n==1: return 1
        r=a007947(n)
        n = n + r
        while a007947(n)!=r:
            n+=r
        return n
    def A(n, k): return a019565(k) if n==1 else a065642(A(n - 1, k))
    for n in range(1, 11): print([A(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Apr 18 2017
  • Scheme
    (define (A285321 n) (A285321bi (A002260 n) (A004736 n)))
    (define (A285321bi row col) (if (= 1 row) (A019565 col) (A065642 (A285321bi (- row 1) col))))
    

Formula

A(1,k) = A019565(k), A(n,k) = A065642(A(n-1,k)).
For all n >= 2: A(A008479(n), A087207(n)) = n.

A285329 a(n) = A013928(A007947(n)).

Original entry on oeis.org

0, 1, 2, 1, 3, 4, 5, 1, 2, 6, 7, 4, 8, 9, 10, 1, 11, 4, 12, 6, 13, 14, 15, 4, 3, 16, 2, 9, 17, 18, 19, 1, 20, 21, 22, 4, 23, 24, 25, 6, 26, 27, 28, 14, 10, 29, 30, 4, 5, 6, 31, 16, 32, 4, 33, 9, 34, 35, 36, 18, 37, 38, 13, 1, 39, 40, 41, 21, 42, 43, 44, 4, 45, 46, 10, 24, 47, 48, 49, 6, 2, 50, 51, 27, 52, 53, 54, 14, 55, 18, 56, 29, 57, 58, 59, 4, 60, 9, 20, 6
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2017

Keywords

Comments

For n > 1, a(n) gives the (one-based) index of the column where n is located in array A284311, or respectively, index of the row where n is in A284457. A008479 gives the other index.

Crossrefs

Cf. A008479 (the other index).
Cf. array A284311 (A284457).

Programs

  • Python
    from operator import mul
    from sympy import primefactors
    from sympy.ntheory.factor_ import core
    from functools import reduce
    def a007947(n): return 1 if n<2 else reduce(mul, primefactors(n))
    def a013928(n): return sum(1 for i in range(1, n) if core(i) == i)
    print([a013928(a007947(n)) for n in range(1, 101)]) # Indranil Ghosh, Apr 18 2017
    
  • Python
    from math import prod, isqrt
    from sympy import primefactors, mobius
    def A285329(n):
        m=prod(primefactors(n))-1
        return sum(mobius(k)*(m//k**2) for k in range(1,isqrt(m)+1)) # Chai Wah Wu, May 12 2024

Formula

a(n) = A013928(A007947(n)).
Other identities. For all n >= 0:
If A008683(n) <> 0 [when n is squarefree, A005117], a(n) = A013928(n), otherwise a(n) = a(A285328(n)).
a(A019565(n)) = A064273(n).

A010848 Number of numbers k <= n such that at least one prime factor of n is not a prime factor of k.

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 6, 4, 6, 9, 10, 10, 12, 13, 14, 8, 16, 15, 18, 18, 20, 21, 22, 20, 20, 25, 18, 26, 28, 29, 30, 16, 32, 33, 34, 30, 36, 37, 38, 36, 40, 41, 42, 42, 42, 45, 46, 40, 42, 45, 50, 50, 52, 45, 54, 52, 56, 57, 58, 58, 60, 61, 60, 32, 64, 65, 66, 66, 68, 69, 70, 60
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    f:= n -> n - n/convert(numtheory:-factorset(n),`*`):
    map(f, [$1..100]); # Robert Israel, Apr 10 2018

Formula

a(n) = n-A003557(n). - Vladeta Jovovic, Sep 15 2006

Extensions

Definition corrected by Vladeta Jovovic, Sep 15 2006

A081375 a(n) is the least number k such that A081373(k) = n.

Original entry on oeis.org

1, 2, 6, 12, 30, 42, 72, 78, 84, 90, 190, 216, 222, 228, 234, 252, 270, 540, 546, 570, 630, 738, 744, 770, 792, 858, 900, 924, 930, 990, 1050, 1638, 1710, 1890, 1980, 2100, 2310, 2418, 2442, 2508, 2562, 2574, 2604, 2700, 2772, 2790, 2850, 2970, 3150
Offset: 1

Views

Author

Labos Elemer, Mar 24 2003

Keywords

Crossrefs

Programs

  • Mathematica
    f[x_] := Count[Table[EulerPhi[j]-EulerPhi[x], {j, 1, x}], 0] t=Table[0, {50}]; Do[s=f[n]; If[s<51&&t[[s]]==0, t[[s]]=n], {n, 1, 4000}]; t
  • PARI
    lista(len) = {my(v = vector(len), c = 0, k = 1, i); while(c < len, i = #select(x -> x <= k, invphi(eulerphi(k))); if(i <= len && v[i] == 0, c++; v[i] = k); k++); v;} \\ Amiram Eldar, Nov 08 2024, using Max Alekseyev's invphi.gp

A381096 Number of k <= n such that k is neither coprime to n and rad(k) != rad(n), where rad = A007947.

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 0, 1, 1, 5, 0, 6, 0, 7, 6, 4, 0, 10, 0, 10, 8, 11, 0, 13, 3, 13, 6, 14, 0, 21, 0, 11, 12, 17, 10, 20, 0, 19, 14, 21, 0, 29, 0, 22, 19, 23, 0, 28, 5, 28, 18, 26, 0, 33, 14, 29, 20, 29, 0, 42, 0, 31, 25, 26, 16, 45, 0, 34, 24, 45, 0, 42, 0, 37
Offset: 1

Views

Author

Michael De Vlieger, Feb 14 2025

Keywords

Comments

Number of k <= n in the cototient of n that do not share the same squarefree kernel as n.
Define a number k "neutral" to n to be such that 1 < gcd(k,n) < k, that is, k neither divides n nor is coprime to n. A045763(n) is the number of k < n such that k is neutral to n.
Define quality Q(k) to be true if k is such that 1 < gcd(k,n) and rad(k) != rad(n).
Then for k <= n and n > 1, a(n) = A045763(n), but admitting divisors k | n such that rad(k) != rad(n), and eliminating occasional nondivisors k such that rad(k) = rad(n), i.e., k listed in row n of A359929 for n = A360768(i).

Examples

			a(6) = 3 since {2, 3, 4} are neither coprime to 6 and do not have the squarefree kernel 6.
a(8) = 1 since only 6 is neither coprime to 8 and does not share the squarefree kernel 2 with 8.
a(10) = 5 since {2, 4, 5, 6, 8} are neither coprime to 10 nor have the squarefree kernel 10.
a(12) = 6 since {2, 3, 4, 8, 9, 10} are neither coprime to 12 nor have the squarefree kernel 6.
a(14) = 7 since {2, 4, 6, 7, 8, 10, 12} are neither coprime to 14 nor have the squarefree kernel 14, etc.
		

Crossrefs

Programs

  • Mathematica
    {0}~Join~Table[n - EulerPhi[n] - DivisorSigma[0, n/rad[n]], {n, 2, 120}]

Formula

a(1) = 0, a(p) = a(4) = 0.
a(n) = A045763(n) - A005361(n).
For n > 1, a(n) = n - phi(n) - tau(n/rad(n)) = A000010(n) - A005361(n).
For n > 1, a(n) = n - A000010(n) - A008479(n) + A355432(n).

A322590 Lexicographically earliest such positive sequence a that a(i) = a(j) => A007947(i) = A007947(j) for all i, j.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 2, 3, 7, 8, 5, 9, 10, 11, 2, 12, 5, 13, 7, 14, 15, 16, 5, 4, 17, 3, 10, 18, 19, 20, 2, 21, 22, 23, 5, 24, 25, 26, 7, 27, 28, 29, 15, 11, 30, 31, 5, 6, 7, 32, 17, 33, 5, 34, 10, 35, 36, 37, 19, 38, 39, 14, 2, 40, 41, 42, 22, 43, 44, 45, 5, 46, 47, 11, 25, 48, 49, 50, 7, 3, 51, 52, 28, 53, 54, 55, 15, 56, 19, 57, 30, 58, 59, 60, 5, 61, 10, 21, 7, 62, 63, 64, 17
Offset: 1

Views

Author

Antti Karttunen, Dec 17 2018

Keywords

Comments

Restricted growth sequence transform of A007947.

Crossrefs

Cf. A007947, A008479 (ordinal transform).
One more than A285329.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007947(n) = factorback(factorint(n)[, 1]);
    v322590 = rgs_transform(vector(up_to, n, A007947(n)));
    A322590(n) = v322590[n];

Formula

a(n) = 1 + A285329(n).
Previous Showing 11-20 of 32 results. Next