cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 595 results. Next

A230593 a(n) = n * Sum_{q|n} 1 / q, where q are noncomposite numbers (A008578) dividing n.

Original entry on oeis.org

1, 3, 4, 6, 6, 11, 8, 12, 12, 17, 12, 22, 14, 23, 23, 24, 18, 33, 20, 34, 31, 35, 24, 44, 30, 41, 36, 46, 30, 61, 32, 48, 47, 53, 47, 66, 38, 59, 55, 68, 42, 83, 44, 70, 69, 71, 48, 88, 56, 85, 71, 82, 54, 99, 71, 92, 79, 89, 60, 122, 62, 95, 93, 96, 83, 127
Offset: 1

Views

Author

Jaroslav Krizek, Oct 25 2013

Keywords

Examples

			For n = 6: a(6) = 6 * (1/1 + 1/2 + 1/3) = 11.
		

Crossrefs

Coincides with A129283 on squarefree numbers, A005117.

Programs

  • Mathematica
    a[n_] := n * DivisorSum[n, 1/# &, !CompositeQ[#] &]; Array[a, 100] (* Amiram Eldar, Nov 12 2021 *)
  • PARI
    A230593(n) = sumdiv(n,d,((1==d)||isprime(d))*(n/d)); \\ Antti Karttunen, Nov 12 2021

Formula

For n > 1, a(n) = n + n * Sum_(p|n) 1 / p, where p are primes dividing n.
a(n) = A069359(n) + n.
a(n) = Sum_{d|n} A080339(d) * A000027(n/d).
a(n) = A080339(n) * A000027(n), where operation * denotes Dirichlet convolution, i.e. convolution of type: a(n) = Sum_{d|n} b(d) * c(n/d).
For p, q = distinct primes, a(p) = p + 1, a(pq) = pq - 1.
From Antti Karttunen, Nov 12 2021: (Start)
a(n) = A129283(n) - A329039(n).
a(A005117(n)) = A129283(A005117(n)), for all n >= 1.
(End)
For p prime, k>=1, a(p^k) = p^(k-1) * (p+1). - Bernard Schott, Nov 12 2021

A075527 a(n) = A008578(n+3) - A008578(n+1).

Original entry on oeis.org

2, 3, 4, 6, 6, 6, 6, 6, 10, 8, 8, 10, 6, 6, 10, 12, 8, 8, 10, 6, 8, 10, 10, 14, 12, 6, 6, 6, 6, 18, 18, 10, 8, 12, 12, 8, 12, 10, 10, 12, 8, 12, 12, 6, 6, 14, 24, 16, 6, 6, 10, 8, 12, 16, 12, 12, 8, 8, 10, 6, 12, 24, 18, 6, 6, 18, 20, 16, 12, 6, 10, 14, 14, 12, 10, 10, 14, 12, 12, 18, 12
Offset: 0

Views

Author

Reinhard Zumkeller, Sep 22 2002

Keywords

Comments

For n>0: a(n) = A031131(n) and a(n) - a(n-1) = A075526(n).

Crossrefs

Extensions

Correction for change of offset in A158611 and A008578 in Aug 2009 Jaroslav Krizek, Jan 27 2010

A249340 Position of the first occurrence of n-th noncomposite number, A008578(n), in A249336; positions of records in A249338.

Original entry on oeis.org

1, 3, 5, 13, 20, 39, 50, 70, 80, 97, 131, 142, 193, 240, 257, 296, 322, 379, 397, 435, 478, 490, 542, 569, 629, 736, 758, 764, 828, 835, 872, 1067, 1100, 1209, 1214, 1369, 1414, 1468, 1514, 1549, 1606, 1681, 1700, 1853, 1871, 1903, 1931, 2116, 2244, 2293, 2303, 2343
Offset: 1

Views

Author

Antti Karttunen, Oct 26 2014

Keywords

Crossrefs

Formula

a(n) = A249339(n+1) - 1.
Other identities. For all n >= 1:
A249336(a(n)) = A008578(n).
A249338(a(n)) = n-1.

A322310 a(n) = Product_{d|n, d+1 is prime} A008578(1+[Sum_{i=0..A286561(n,1+d)} A320000((n/d)/((1+d)^i), 1+d)]). Here A286561(n,k) gives the k-valuation of n (for k > 1).

Original entry on oeis.org

3, 6, 1, 10, 1, 12, 1, 14, 1, 4, 1, 28, 1, 1, 1, 22, 1, 12, 1, 20, 1, 4, 1, 102, 1, 1, 1, 4, 1, 4, 1, 26, 1, 1, 1, 66, 1, 1, 1, 104, 1, 12, 1, 6, 1, 4, 1, 92, 1, 1, 1, 4, 1, 4, 1, 6, 1, 4, 1, 132, 1, 1, 1, 34, 1, 4, 1, 1, 1, 4, 1, 1240, 1, 1, 1, 1, 1, 4, 1, 57, 1, 4, 1, 21, 1, 1, 1, 28, 1, 1, 1, 6, 1, 1, 1, 492, 1, 1, 1, 12, 1, 4, 1, 6, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 03 2018

Keywords

Crossrefs

Cf. A014197, A320000, A322311 (rgs-transform).
Cf. also A322312.

Programs

  • PARI
    A320000sq(n, k) = if(1==n, if(1==k,2,1), sumdiv(n, d, if(d>=k && isprime(d+1), my(p=d+1, q=n/d); sum(i=0, valuation(n, p), A320000sq(q/(p^i), p))))); \\ From A320000
    A322310(n) = if(1==n,3,my(m=1); fordiv(n,d, my(s, p=d+1, q=n/d); if(isprime(p) && (s = sum(i=0,valuation(n, p), A320000sq(q/(p^i),p))), m *= prime(s))); (m));

Formula

a(n) = Product_{d|n} A008578(1+[Sum_{i=0..A286561(n,1+d)} A320000((n/d)/((1+d)^i), 1+d)])^A010051(1+d).
For all n, A056239(a(n)) = A014197(n).

A327167 a(n) = Product_{d|A276086(n), d>1} A008578(1+A286561(n,d)), where A286561(n,d) gives the highest exponent of d dividing n.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 8, 1, 1, 1, 1, 2, 2, 1, 1, 1, 6, 1, 5, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 12, 1, 1, 1, 3, 6, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 2, 8, 1, 1, 1, 1, 48, 1, 2, 1, 1, 2, 7, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 6, 3, 3, 1, 1, 1, 1, 128
Offset: 1

Views

Author

Antti Karttunen, Sep 19 2019

Keywords

Crossrefs

Programs

  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A327167(n) = { my(m=1,v); fordiv(A276086(n),d,if((d>1) && ((v = valuation(n,d))>0), m *= prime(v))); (m); };

Formula

a(n) = Product_{d|A276086(n), d>1} A008578(1+A286561(n,d)).
Other identities. For all n >= 1:
1+A001222(a(n)) = A327168(n).

A138607 List first A008578(1) odd numbers, then first A008578(2) even numbers, then the next A008578(3) odd numbers, then the next A008578(4) even numbers, etc.

Original entry on oeis.org

1, 2, 4, 3, 5, 7, 6, 8, 10, 12, 14, 9, 11, 13, 15, 17, 19, 21, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73
Offset: 1

Views

Author

Ctibor O. Zizka, May 14 2008

Keywords

Comments

A permutation of numbers.

Examples

			Let
  S1={1}
  S2={2,4}
  S3={3,5,7}
  S4={6,8,10,12,14}
  S5={9,11,13,15,17,19,21}
  S6={16,18,20,22,24,26,28,30,32,34,36}
  ...
then S1, S2, S3, S4, S5, S6,... gives this sequence.
		

Crossrefs

Formula

If n < 3, a(n) = n. If n-2 = A007504(A083375(n-2)), then a(n) = a(n-1-A000040(A083375(n-2)))+2, otherwise a(n) = a(n-1)+2. - Antti Karttunen, Oct 05 2009.

Extensions

Edited, extended, and offset changed from 0 to 1 by Antti Karttunen, Oct 05 2009

A162177 a(n) is the number of composite numbers that are smaller than A008578(n).

Original entry on oeis.org

0, 0, 0, 1, 2, 5, 6, 9, 10, 13, 18, 19, 24, 27, 28, 31, 36, 41, 42, 47, 50, 51, 56, 59, 64, 71, 74, 75, 78, 79, 82, 95, 98, 103, 104, 113, 114, 119, 124, 127, 132, 137, 138, 147, 148, 151, 152, 163, 174, 177, 178, 181, 186, 187, 196, 201, 206, 211, 212, 217, 220, 221
Offset: 1

Views

Author

Jaroslav Krizek, Jun 27 2009

Keywords

Comments

Essentially the same as A065890.
a(n) = number of terms of A073169(n) less than n.

Examples

			A008578(6) = 11, and there are 5 composites smaller than 11, viz. 4, 6, 8, 9, 10, hence a(6) = 5.
		

Crossrefs

Cf. A002808 (composites), A008578 (1 and the primes), A065890, A073169.

Programs

  • Magma
    T:=[0,1] cat PrimesUpTo(300); [ T[n+1]-n: n in [1..#T-1] ]; // Klaus Brockhaus, Sep 08 2009
  • Mathematica
    Join[{0},Module[{nn=300,cmps},cmps=Accumulate[Table[If[CompositeQ[n],1,0],{n,nn}]];Table[cmps[[p]],{p,Prime[ Range[ PrimePi[ nn]]]}]]] (* Harvey P. Dale, Nov 11 2024 *)

Formula

a(n) = A008578(n) - n = A158611(n+1) -n.
a(n) = A065890(n-1) for n > 1.

Extensions

Edited and extended by Klaus Brockhaus, Sep 09 2009

A230594 Number of ways to write n as n = x*y, where x, y = noncomposite numbers (A008578), 1 <= x <= n, 1 <= y <= n.

Original entry on oeis.org

1, 2, 2, 1, 2, 2, 2, 0, 1, 2, 2, 0, 2, 2, 2, 0, 2, 0, 2, 0, 2, 2, 2, 0, 1, 2, 0, 0, 2, 0, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 0, 2, 0, 0, 2, 2, 0, 1, 0, 2, 0, 2, 0, 2, 0, 2, 2, 2, 0, 2, 2, 0, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 2, 0, 0, 2, 0, 2, 0, 0, 2, 2, 0, 2, 2, 2
Offset: 1

Views

Author

Jaroslav Krizek, Oct 27 2013

Keywords

Comments

Dirichlet convolution of A080339(n) with itself, where A080339 = characteristic function of noncomposite numbers (A008578).
Dirichlet convolution of functions b(n) and c(n) is function a(n) = Sum_{d|n} b(d) * c(n/d).
a(n) = 0, 1 or 2. a(n) = 0 for numbers n from A033942 (numbers with least 3 prime factors (counted with multiplicity)); a(n) = 1 for n = p^2, p = prime; a(n) = 2 for numbers n from A167171 (A006881 union A000040).

Examples

			For n = 6: a(6) = Sum_(d|6) A080339(d) * A080339(6/d) = 1*0 + 1*1 + 1*1 + 0*1 = 2.
		

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A080339(d) * A080339(n/d).

A249342 Position of the first occurrence of n-th noncomposite number, A008578(n), in A249337; positions of records in A249072.

Original entry on oeis.org

1, 2, 6, 13, 20, 39, 45, 70, 80, 97, 121, 145, 193, 240, 257, 296, 322, 379, 400, 432, 481, 490, 532, 566, 632, 715, 760, 766, 807, 835, 878, 1067, 1104, 1209, 1215, 1369, 1414, 1468, 1514, 1540, 1605, 1683, 1706, 1853, 1871, 1905, 1935, 2116, 2276, 2293, 2304, 2343
Offset: 1

Views

Author

Antti Karttunen, Oct 26 2014

Keywords

Crossrefs

After the initial term, one less than A249341.

Formula

For all n >= 1:
A249337(a(n)) = A008578(n).
A249072(a(n)) = n-1.
For all n >= 2:
a(n) = A249341(n) - 1.

A255324 Difference between the n-th Ludic number and the n-th noncomposite number: a(n) = A003309(n) - A008578(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 4, 2, 0, 6, 4, 2, 4, 6, 8, 8, 10, 10, 12, 16, 12, 14, 18, 18, 18, 18, 20, 22, 30, 22, 26, 24, 34, 26, 28, 24, 30, 42, 38, 42, 42, 36, 40, 38, 40, 36, 34, 38, 48, 50, 48, 60, 56, 56, 66, 62, 66, 64, 72, 76, 68, 70, 72, 76, 80, 76, 78, 72, 72, 78, 74, 70, 72, 84, 84, 86, 84, 92, 88, 84, 88, 86, 94, 96, 98, 104
Offset: 1

Views

Author

Antti Karttunen, Feb 23 2015

Keywords

Crossrefs

Cf. A255325 (the same terms halved).

Programs

Formula

a(n) = A003309(n) - A008578(n).
a(n) = 2*A255325(n).
Previous Showing 11-20 of 595 results. Next