cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A094415 Triangle T read by rows: dot product * .

Original entry on oeis.org

1, 4, 5, 10, 13, 13, 20, 26, 28, 26, 35, 45, 50, 50, 45, 56, 71, 80, 83, 80, 71, 84, 105, 119, 126, 126, 119, 105, 120, 148, 168, 180, 184, 180, 168, 148, 165, 201, 228, 246, 255, 255, 246, 228, 201, 220, 265, 300, 325, 340, 345, 340, 325, 300, 265, 286, 341
Offset: 0

Views

Author

Ralf Stephan, May 02 2004

Keywords

Examples

			Triangle begins as:
   1;
   4,  5;
  10, 13, 13;
  20, 26, 28, 26;
  35, 45, 50, 50, 45;
  56, 71, 80, 83, 80, 71;
		

Crossrefs

Half-diagonal is A050410.
Row sums are A000537.
See also A094414, A088003.

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> (n+1)*((n+2)*(n+3) + 3*k*(n-k+1))/6 ))); # G. C. Greubel, Oct 30 2019
  • Magma
    [(n+1)*((n+2)*(n+3) + 3*k*(n-k+1))/6: k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
    
  • Maple
    seq(seq( (n+1)*((n+2)*(n+3) + 3*k*(n-k+1))/6 , k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
  • Mathematica
    Table[(n+1)*((n+2)*(n+3) + 3*k*(n-k+1))/6, {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
  • PARI
    T(n,k) = (n+1)*((n+2)*(n+3) + 3*k*(n-k+1))/6;
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
    
  • Sage
    [[(n+1)*((n+2)*(n+3) + 3*k*(n-k+1))/6 for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
    

Formula

T(n, k) = n*(n^2 + 3*n*(1+k) + 2 - 3*k^2)/6 for n >= 0, 0 <= k <= n.

A022817 Number of terms in 7th derivative of a function composed with itself n times.

Original entry on oeis.org

1, 15, 74, 237, 599, 1301, 2541, 4586, 7785, 12583, 19536, 29327, 42783, 60893, 84827, 115956, 155873, 206415, 269686, 348081, 444311, 561429, 702857, 872414, 1074345, 1313351, 1594620, 1923859, 2307327, 2751869, 3264951, 3854696, 4529921, 5300175, 6175778
Offset: 1

Views

Author

Keywords

References

  • W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.

Crossrefs

Programs

  • Maple
    a:= n-> n*(36+(-356+(645+(355+(39+n)*n)*n)*n)*n)/720:
    seq(a(n), n=1..40);  # Alois P. Heinz, Aug 18 2012
  • Mathematica
    Table[(n/720*(n^5+39*n^4+355*n^3+645*n^2-356*n+36)),{n,1,100}] (* Vincenzo Librandi, Aug 18 2012 *)

Formula

a(n) = n/720 * (n^5 + 39*n^4 + 355*n^3 + 645*n^2 - 356*n + 36).
G.f.: (x^5-4*x^4+x^3+10*x^2-8*x-1)*x/(x-1)^7. - Alois P. Heinz, Aug 18 2012

Extensions

More terms from Christian G. Bower, Aug 15 1999.

A099233 Square array read by antidiagonals associated to sections of 1/(1-x-x^k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 6, 5, 1, 1, 1, 5, 10, 13, 8, 1, 1, 1, 6, 15, 26, 28, 13, 1, 1, 1, 7, 21, 45, 69, 60, 21, 1, 1, 1, 8, 28, 71, 140, 181, 129, 34, 1, 1, 1, 9, 36, 105, 251, 431, 476, 277, 55, 1, 1, 1, 10, 45, 148, 413, 882, 1326, 1252, 595, 89, 1
Offset: 0

Views

Author

Paul Barry, Oct 08 2004

Keywords

Examples

			Rows begin
  1, 1, 1,  1,  1,   1, ...
  1, 1, 2,  3,  5,   8, ...
  1, 1, 3,  6, 13,  28, ...
  1, 1, 4, 10, 26,  69, ...
  1, 1, 5, 15, 45, 140, ...
Row 1 is the 0-section of 1/(1-x-x)   (A000079);
Row 2 is the 1-section of 1/(1-x-x^2) (A000045);
Row 3 is the 2-section of 1/(1-x-x^3) (A000930);
Row 4 is the 3-section of 1/(1-x-x^4) (A003269);
etc.
		

Crossrefs

Sums of antidiagonals are A099236.
Columns include A000217, A008778.
Rows include A000045, A002478, A099234, A099235.
Main diagonal gives A099237.
Cf. A099238.

Formula

Square array T(n, k) = Sum_{j=0..n} binomial(k(n-j), j).
Rows are generated by 1/(1-x(1+x)^k) and satisfy a(n) = Sum_{k=0..n} binomial(n, k)a(n-k-1).

A022812 Number of terms in n-th derivative of a function composed with itself 4 times.

Original entry on oeis.org

1, 1, 4, 10, 26, 55, 121, 237, 468, 867, 1597, 2821, 4952, 8421, 14206, 23439, 38324, 61570, 98112, 154111, 240197, 370015, 565802, 856664, 1288366, 1921016, 2846572, 4186730, 6122369, 8893904, 12851713, 18460961, 26388354, 37519159, 53101687, 74792210
Offset: 0

Views

Author

Winston C. Yang (yang(AT)math.wisc.edu)

Keywords

References

  • W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.

Crossrefs

Cf. A008778, A022811-A022818, A024207-A024210. First column of A039806.

Programs

  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n < k, 0, If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, k - j], {j, 0, Min[n/i, k]}]]]];
    a[n_, k_] := a[n, k] = If[k == 1, 1, Sum[b[n, n, i]*a[i, k-1], {i, 0, n}]];
    a[n_] := a[n, 4]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 28 2017, after Alois P. Heinz *)

Formula

If a(n,m) = number of terms in m-derivative of a function composed with itself n times, p(n,k) = number of partitions of n into k parts, then a(n,m) = sum_{i=0..m} p(m,i)*a(n-1,i).

A022813 Number of terms in n-th derivative of a function composed with itself 5 times.

Original entry on oeis.org

1, 1, 5, 15, 45, 110, 271, 599, 1309, 2690, 5436, 10545, 20148, 37341, 68223, 121878, 214846, 371993, 636570, 1073325, 1790721, 2950922, 4816603, 7778937, 12455988, 19761148, 31108121, 48572686, 75307513, 115909727, 177255526, 269294119, 406708721, 610593948
Offset: 0

Views

Author

Winston C. Yang (yang(AT)math.wisc.edu)

Keywords

References

  • W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.

Crossrefs

Cf. A008778, A022811-A022818, A024207-A024210. First column of A039807.

Programs

  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[nJean-François Alcover, Apr 28 2017, after Alois P. Heinz *)

Formula

If a(n,m) = number of terms in m-derivative of a function composed with itself n times, p(n,k) = number of partitions of n into k parts, then a(n,m) = sum_{i=0..m} p(m,i)*a(n-1,i).

A141539 Square array A(n,k) of numbers of length n binary words with at least k "0" between any two "1" digits (n,k >= 0), read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 2, 3, 8, 1, 2, 3, 5, 16, 1, 2, 3, 4, 8, 32, 1, 2, 3, 4, 6, 13, 64, 1, 2, 3, 4, 5, 9, 21, 128, 1, 2, 3, 4, 5, 7, 13, 34, 256, 1, 2, 3, 4, 5, 6, 10, 19, 55, 512, 1, 2, 3, 4, 5, 6, 8, 14, 28, 89, 1024, 1, 2, 3, 4, 5, 6, 7, 11, 19, 41, 144, 2048, 1, 2, 3, 4, 5, 6, 7, 9, 15, 26, 60, 233, 4096
Offset: 0

Views

Author

Alois P. Heinz, Aug 15 2008

Keywords

Comments

A(n,k+1) = A(n,k) - A143291(n,k).
From Gary W. Adamson, Dec 19 2009: (Start)
Alternative method generated from variants of an infinite lower triangle T(n) = A000012 = (1; 1,1; 1,1,1; ...) such that T(n) has the leftmost column shifted up n times. Then take lim_{k->infinity} T(n)^k, obtaining a left-shifted vector considered as rows of an array (deleting the first 1) as follows:
1, 2, 4, 8, 16, 32, 64, 128, 256, ... = powers of 2
1, 1, 2, 3, 5, 8, 13, 21, 34, ... = Fibonacci numbers
1, 1, 1, 2, 3, 4, 6, 9, 13, ... = A000930
1, 1, 1, 1, 2, 3, 4, 5, 7, ... = A003269
... with the next rows A003520, A005708, A005709, ... such that beginning with the Fibonacci row, the succession of rows are recursive sequences generated from a(n) = a(n-1) + a(n-2); a(n) = a(n-1) + a(n-3), ... a(n) = a(n-1) + a(n-k); k = 2,3,4,... Last, columns going up from the topmost 1 become rows of triangle A141539. (End)

Examples

			A(4,2) = 6, because 6 binary words of length 4 have at least 2 "0" between any two "1" digits: 0000, 0001, 0010, 0100, 1000, 1001.
Square array A(n,k) begins:
    1,  1,  1,  1,  1,  1,  1,  1, ...
    2,  2,  2,  2,  2,  2,  2,  2, ...
    4,  3,  3,  3,  3,  3,  3,  3, ...
    8,  5,  4,  4,  4,  4,  4,  4, ...
   16,  8,  6,  5,  5,  5,  5,  5, ...
   32, 13,  9,  7,  6,  6,  6,  6, ...
   64, 21, 13, 10,  8,  7,  7,  7, ...
  128, 34, 19, 14, 11,  9,  8,  8, ...
		

Crossrefs

Cf. column k=0: A000079, k=1: A000045(n+2), k=2: A000930(n+2), A068921, A078012(n+5), k=3: A003269(n+4), A017898(n+7), k=4: A003520(n+4), A017899(n+9), k=5: A005708(n+5), A017900(n+11), k=6: A005709(n+6), A017901(n+13), k=7: A005710(n+7), A017902(n+15), k=8: A005711(n+7), A017903(n+17), k=9: A017904(n+19), k=10: A017905(n+21), k=11: A017906(n+23), k=12: A017907(n+25), k=13: A017908(n+27), k=14: A017909(n+29).
Main diagonal gives A000027(n+1).
A(2n,n) gives A000217(n+1)
A(3n,n) gives A008778.
A(3n,2n) gives A034856(n+1).
A(2n,3n) gives A005408.
A(2^n-1,n) gives A376697.
See also A143291.

Programs

  • Maple
    A:= proc(n, k) option remember;
          if k=0 then 2^n
        elif n<=k and n>=0 then n+1
        elif n>0 then A(n-1, k) +A(n-k-1, k)
        else          A(n+1+k, k) -A(n+k, k)
          fi
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..15);
  • Mathematica
    a[n_, k_] := a[n, k] = Which[k == 0, 2^n, n <= k && n >= 0, n+1, n > 0, a[n-1, k] + a[n-k-1, k], True, a[n+1+k, k] - a[n+k, k]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *)

Formula

G.f. of column k: x^(-k)/(1-x-x^(k+1)).
A(n,k) = 2^n if k=0, otherwise A(n,k) = n+1 if n<=k, otherwise A(n,k) = A(n-1,k) + A(n-k-1,k).

A022814 Number of terms in n-th derivative of a function composed with itself 6 times.

Original entry on oeis.org

1, 1, 6, 21, 71, 196, 532, 1301, 3101, 6956, 15217, 31951, 65670, 130914, 256150, 489690, 920905, 1699693, 3092751, 5540571, 9802091, 17114237, 29550346, 50444952, 85264328, 142682505, 236649524, 389033014, 634408230, 1026350152, 1648328017, 2628254619
Offset: 0

Views

Author

Winston C. Yang (yang(AT)math.wisc.edu)

Keywords

References

  • W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.

Crossrefs

Cf. A008778, A022811-A022818, A024207-A024210. First column of A050300.

Programs

  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[nJean-François Alcover, Apr 28 2017, after Alois P. Heinz *)

Formula

If a(n,m) = number of terms in m-derivative of a function composed with itself n times, p(n,k) = number of partitions of n into k parts, then a(n,m) = sum_{i=0..m} p(m,i)*a(n-1,i).

A022815 Number of terms in 5th derivative of a function composed with itself n times.

Original entry on oeis.org

1, 7, 23, 55, 110, 196, 322, 498, 735, 1045, 1441, 1937, 2548, 3290, 4180, 5236, 6477, 7923, 9595, 11515, 13706, 16192, 18998, 22150, 25675, 29601, 33957, 38773, 44080, 49910, 56296, 63272, 70873, 79135, 88095, 97791, 108262, 119548, 131690
Offset: 1

Views

Author

Keywords

Examples

			a(7) = 7*28 + (7*0+6*1+5*3+4*6+3*10+2*15+1*21) = 322. [_Bruno Berselli_, Jun 22 2013]
		

References

  • W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.

Crossrefs

Programs

Formula

a(n) = n*(n+1)*(n^2+13*n-2)/24. - John W. Layman, Apr 27 2000
G.f.: x*(1-2*x^2+2*x)/(1-x)^5. [Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009]
a(n) = n*A000217(n) + sum((n-i)*A000217(i), i=0..n-1). [Bruno Berselli, Jun 23 2013]

Extensions

G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009.
More terms from Christian G. Bower, Aug 15 1999.

A024208 Number of terms in n-th derivative of a function composed with itself 8 times.

Original entry on oeis.org

1, 1, 8, 36, 148, 498, 1590, 4586, 12644, 32775, 81901, 196085, 455772, 1025779, 2252674, 4823546, 10116553, 20783490, 41949270, 83211931, 162552093, 312850854, 594086542, 1113610526, 2062796698, 3777567977, 6844786250, 12276620372, 21809737429, 38391720375
Offset: 0

Views

Author

Winston C. Yang (yang(AT)math.wisc.edu)

Keywords

References

  • W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.

Crossrefs

Cf. A008778, A022811-A022817, A024207-A024210. First column of A050302.
Column k=8 of A022818.

Programs

  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[nJean-François Alcover, Apr 28 2017, after Alois P. Heinz *)

Formula

If a(n,m) = number of terms in m-derivative of a function composed with itself n times, p(n,k) = number of partitions of n into k parts, then a(n,m) = sum_{i=0..m} p(m,i)*a(n-1,i).

A024209 Number of terms in n-th derivative of a function composed with itself 9 times.

Original entry on oeis.org

1, 1, 9, 45, 201, 735, 2517, 7785, 22857, 63024, 166819, 422537, 1035971, 2456694, 5672347, 12756334, 28053280, 60371967, 127479247, 264311585, 539102751, 1082474167, 2142579168, 4183251750, 8064722973, 15360809911, 28928858208, 53896616704, 99398216733
Offset: 0

Views

Author

Winston C. Yang (yang(AT)math.wisc.edu)

Keywords

References

  • W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.

Crossrefs

Cf. A008778, A022811-A022817, A024207-A024210. First column of A050303.
Column k=9 of A022818.

Programs

  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[nJean-François Alcover, Apr 28 2017, after Alois P. Heinz *)

Formula

If a(n,m) = number of terms in m-derivative of a function composed with itself n times, p(n,k) = number of partitions of n into k parts, then a(n,m) = sum_{i=0..m} p(m,i)*a(n-1,i).
Previous Showing 11-20 of 30 results. Next