cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A323328 Lexicographically earliest unbounded aliquot-like sequence based on the Dedekind psi function: a(1) = 318, a(n) = t(a(n-1)) where t(k) = A001615(k) - k.

Original entry on oeis.org

318, 330, 534, 546, 798, 1122, 1470, 2562, 3390, 4818, 5838, 7602, 9870, 17778, 17790, 24978, 27438, 30882, 30894, 34386, 40782, 52530, 82254, 82266, 82278, 106074, 111654, 111690, 176022, 266346, 266382, 266490, 480006, 480330, 674406, 740826, 833814, 834138
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

318 is the least number k whose repeated iteration of the mapping k -> A001615(k) - k yields an unbounded sequence. Since t(m^j * n) = m^j * t(n) if m|n, then if in the sequence a_0 = k, a_1 = t(k), a_2 = t(t(k))... there is a term a_{i1} = m^j * a_0 such that m|k and j > 0 then a_{i+i1} = m^j * a_i for all i and thus the sequence is unbounded. Since a(13)=9870, after 19 iterations a(32) = 27 * 9870, 27 = 3^3 and 3|9870 then a(n+19) = 27 * a(n) for n >= 13.

References

  • Jean-Marie De Koninck, Those Fascinating Numbers, Amer. Math. Soc., 2009, page 71, entry 318.

Crossrefs

Programs

  • Mathematica
    t[1] = 0; t[n_] := (Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]) - 1)*n; NestList[t, 318, 40]

A008891 Aliquot sequence starting at 180.

Original entry on oeis.org

180, 366, 378, 582, 594, 846, 1026, 1374, 1386, 2358, 2790, 4698, 6192, 11540, 12736, 12664, 11096, 11104, 10820, 11944, 10466, 5236, 6860, 9940, 14252, 14308, 15218, 10894, 6746, 3376, 3196, 2852, 2524, 1900, 2440, 3140, 3496, 3704, 3256, 3584, 4600, 6560, 9316, 8072, 7078, 3542, 3370, 2714, 1606, 1058, 601, 1, 0
Offset: 0

Views

Author

Keywords

Comments

The sum-of-divisor function A000203 and aliquot parts A001065 are defined only for positive integers, so the trajectory ends when 0 is reached, here at index 52. - M. F. Hasler, Feb 24 2018

References

  • R. K. Guy, Unsolved Problems in Number Theory, B6.

Crossrefs

Cf. A008885 (starting at 30), ..., A008892 (starting at 276), A098007 (length of aliquot sequences).

Programs

  • Maple
    f := proc(n) option remember; if n = 0 then 180; else sigma(f(n-1))-f(n-1); fi; end:
  • Mathematica
    FixedPointList[If[# > 0, DivisorSigma[1, #] - #, 0]&, 180] // Most (* Jean-François Alcover, Mar 28 2020 *)
  • PARI
    a(n,a=180)={for(i=1,n,a=sigma(a)-a);a} \\ M. F. Hasler, Feb 24 2018

Formula

a(n+1) = A001065(a(n)). - R. J. Mathar, Oct 11 2017

Extensions

Edited by M. F. Hasler, Feb 24 2018

A014361 Aliquot sequence starting at 564.

Original entry on oeis.org

564, 780, 1572, 2124, 3336, 5064, 7656, 13944, 26376, 49464, 88536, 187944, 295896, 443904, 812340, 1652304, 2767056, 4803888, 7914048, 13495104, 30725280, 79741440, 196505388, 300216656, 285162916, 237325596, 325831908, 434442572, 325831936, 347001764, 260735800, 434766560
Offset: 0

Views

Author

Keywords

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B6, pp. 92-95.

Crossrefs

Cf. A098007 (length of aliquot sequences); some other examples: A008885 (starting at 30) .. A008892 (starting at 276), A014360 (starting at 552) .. A014365 (starting at 1134), ..., A171103 (starting at 46758). See link to index for a more complete list.
Cf. A001065.

Programs

  • Mathematica
    FixedPointList[If[# > 0, DivisorSigma[1, #] - #, 0]&, 564, 100] (* Jean-François Alcover, Mar 28 2020 *)
  • PARI
    a(n, a=564)={for(i=1, n, a=sigma(a)-a); a} \\ M. F. Hasler, Feb 24 2018

Formula

a(n+1) = A001065(a(n)). - R. J. Mathar, Oct 11 2017

A008886 Aliquot sequence starting at 42.

Original entry on oeis.org

42, 54, 66, 78, 90, 144, 259, 45, 33, 15, 9, 4, 3, 1, 0
Offset: 0

Views

Author

Keywords

Comments

The sum-of-divisor function A000203 and aliquot parts A001065 are defined only for positive integers, so the trajectory ends when 0 is reached, here at index 14. - M. F. Hasler, Feb 24 2018

References

  • R. K. Guy, Unsolved Problems in Number Theory, B6.

Crossrefs

Cf. A098007 (length of aliquot sequences); some other examples: A008885 (starting at 30) .. A008892 (starting at 276), A014360 (starting at 552) .. A014365 (starting at 1134), see link to index for a more complete list.

Programs

  • Maple
    f := proc(n) option remember; if n = 0 then 42; else sigma(f(n-1))-f(n-1); fi; end:
  • Mathematica
    Join[NestList[DivisorSigma[1,#]-#&,42,14],PadRight[{},60,0]] (* Harvey P. Dale, Apr 28 2014 *)
  • PARI
    a(n,a=42)={for(i=1,n,a=sigma(a)-a);a} \\ M. F. Hasler, Feb 24 2018

Formula

a(n+1) = A001065(a(n)). - R. J. Mathar, Oct 11 2017
a(n) = A008885(n+1). - R. J. Mathar, Jan 12 2024

Extensions

Edited by M. F. Hasler, Feb 24 2018

A008890 Aliquot sequence starting at 168.

Original entry on oeis.org

168, 312, 528, 960, 2088, 3762, 5598, 6570, 10746, 13254, 13830, 19434, 20886, 21606, 25098, 26742, 26754, 40446, 63234, 77406, 110754, 171486, 253458, 295740, 647748, 1077612, 1467588, 1956812
Offset: 0

Views

Author

Keywords

Comments

The sum-of-divisor function A000203 and aliquot parts A001065 are defined only for positive integers, so the trajectory ends when 0 is reached, here at index 175. - M. F. Hasler, Feb 24 2018

References

  • R. K. Guy, Unsolved Problems in Number Theory, B6.

Crossrefs

Cf. A008885 (starting at 30), ..., A008892 (starting at 276), A098007 (length of aliquot sequences).

Programs

  • Maple
    f := proc(n) option remember; if n = 0 then 168; else sigma(f(n-1))-f(n-1); fi; end:
  • Mathematica
    NestList[DivisorSigma[1, #] - # &, 168, 175] (* Alonso del Arte, Feb 24 2018 *)
  • PARI
    a(n,a=168)={for(i=1,n,a=sigma(a)-a);a} \\ M. F. Hasler, Feb 24 2018

Formula

a(n+1) = A001065(a(n)). - R. J. Mathar, Oct 11 2017

Extensions

Edited by M. F. Hasler, Feb 24 2018

A014363 Aliquot sequence starting at 966.

Original entry on oeis.org

966, 1338, 1350, 2370, 3390, 4818, 5838, 7602, 9870, 17778, 17790, 24978, 27438, 30882, 30894, 34386, 40782, 52530, 82254, 82266, 82278, 121770, 241110, 450090, 750870, 1295226, 1572678, 1919538, 2760984, 4964136
Offset: 0

Views

Author

Keywords

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B6, pp. 92-95.

Crossrefs

Cf. A008885 (starting at 30) .. A008892 (starting at 276), A014360 (starting at 552) .. A014365 (starting at 1134), ..., A171103 (starting at 46758), A098007 (length of aliquot sequences).
Cf. A001065.

Programs

  • Mathematica
    FixedPointList[If[# > 0, DivisorSigma[1, #] - #, 0]&, 966, 100] (* Jean-François Alcover, Mar 28 2020 *)
  • PARI
    a(n,a=966)={for(i=1,n,a=sigma(a)-a);a} \\ M. F. Hasler, Feb 24 2018

Formula

a(n+1) = A001065(a(n)). - R. J. Mathar, Oct 11 2017

A014364 Aliquot sequence starting at 1074.

Original entry on oeis.org

1074, 1086, 1098, 1320, 3000, 6360, 13080, 26520, 64200, 136680, 303960, 668040, 1448760, 2897880, 6778920, 14760600, 31761720, 75003840, 189623520, 475142400, 1262108388, 1723154620, 2250655556, 1742856988
Offset: 0

Views

Author

Keywords

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B6, pp. 92-95.

Crossrefs

Cf. A098007 (length of aliquot sequences). Some other examples: A008885 (starting at 30) .. A008892 (starting at 276), A014360 (starting at 552) .. A014365 (starting at 1134), ..., A171103 (starting at 46758). See link to index for a more complete list.
Cf. A000203.

Programs

  • Mathematica
    FixedPointList[If[# > 0, DivisorSigma[1, #] - #, 0] &, 1074, 100] (* Jean-François Alcover, Mar 28 2020 *)
  • PARI
    a(n, a=1074)={for(i=1, n, a=sigma(a)-a); a} \\ M. F. Hasler, Feb 24 2018

Formula

a(n+1) = A000203(a(n))-a(n). - R. J. Mathar, Oct 08 2017

A146556 Natural growth of an aliquot sequence driven by a perfect number 2^(p-1)*((2^p) - 1).

Original entry on oeis.org

3, 5, 7, 9, 17, 19, 21, 43, 45, 111, 193, 195, 477, 927, 1777, 1779, 2973, 4963, 6397, 6399, 12961, 14983, 14985, 40191, 66993, 114063, 193233, 334959, 558273, 951999, 1586673, 3724815, 8255985, 18271887, 31279473, 66853647, 171456753, 339654927
Offset: 1

Views

Author

Sergio Pimentel, Oct 31 2008

Keywords

Comments

This is the natural growth of an aliquot sequence that has a driver of the form 2^(p-1) * ((2^p) - 1) (Perfect Number). It will continue growing this way until it loses the driver, which can only happen when the next term and the driver are not coprimes (which hardly ever happens).
The natural growth of the aliquot sequence starting with p=5 at 2^(p-1)*(2^p-1)*3 = 496*3 = 1488 has the factors 3, 5, 7, 9, 17, 19, 21, 43, 45, 111, 193, 195, 477, 927, 1777, 1779, 2973, 4963, 6397, 6399, 12961, 14983, 14985, 40191, 66993, 114063, 193233, 334959, 558273, 951999, 1586673, 3564018 and "loses the driver" at the next term because it is not a multiple of 496. I complemented the terms therefore from p=7 and initial factor 3 which does not lose the driver early. - R. J. Mathar, Jan 22 2009

Examples

			The aliquot sequence starting at 1488 (2^4*31*3) is: 1488, 2480, 3472, 4464,8432, 9424 or: 496*3, 496*5, 496*7, 496*9, 496*17, 496*19, always keeping the 496 driver until reaching a term that is not coprime with 496.
		

Crossrefs

Programs

  • Maple
    p := 7: dr := 2^(p-1)*(2^p-1) ; f := 3 ; aliq := proc(n) option remember ; global dr,f ; local an_1 ; if n = 1 then dr*f ; else an_1 := procname(n-1) ; numtheory[sigma](an_1)-an_1 ; fi; end: A := proc(n) option remember ; global dr ; aliq(n)/dr ; end: for n from 1 to 70 do printf("%a,",A(n)) ; od: # R. J. Mathar, Jan 22 2009
  • Mathematica
    NestList[2*DivisorSigma[1,#]-#&,3,40] (* Harvey P. Dale, Jul 16 2013 *)
  • PARI
    A146556()=a=[3];until(#a==79,a=concat(a,a[#a]+2*(sigma(a[#a])-a[#a])));a
    
  • PARI
    a(n)=if(n==1,3,2*sigma(a(n-1))-a(n-1)) \\ R. K. Guy, Jul 16 2013

Formula

a(n) = a(n-1) + 2*(sigma(a(n-1)) - a(n-1)). - Roderick MacPhee, Aug 21 2012

Extensions

More terms, as derived from p=7, driver 8128. - R. J. Mathar, Jan 22 2009

A371423 Aliquot-like sequence based on the largest aliquot divisor of the sum of divisors of n (A371418) that starts with 222.

Original entry on oeis.org

222, 228, 280, 360, 585, 546, 672, 1008, 1612, 1568, 1197, 1040, 1302, 1536, 2046, 2304, 949, 518, 456, 600, 930, 1152, 1105, 756, 1120, 1512, 2400, 3906, 4992, 7140, 12096, 20320, 24192, 40800, 70308, 108416, 135660, 241920, 490560, 902208, 1235456, 1309440, 2354688
Offset: 1

Views

Author

Amiram Eldar, Mar 23 2024

Keywords

Comments

222 is the least number k for which the repeated iterations of the mapping k -> A371418(k) seem to generate an unbounded sequence.

Examples

			a(1) = 222 by definition.
a(2) = A371418(a(1)) = A371418(222) = 228.
a(3) = A371418(a(2)) = A371418(228) = 280.
		

Crossrefs

Similar sequences: A008892, A323328, A361421.

Programs

  • Mathematica
    r[n_] := n/FactorInteger[n][[1, 1]]; f[n_] := r[DivisorSigma[1, n]]; NestList[f, 222, 60]
  • PARI
    f(n) = {my(s = sigma(n)); if(s == 1, 1, s/factor(s)[1, 1]);}
    lista(nmax) = {my(m = 222); for(n = 1, nmax, print1(m, ", "); m = f(m));}

A008887 Aliquot sequence starting at 60.

Original entry on oeis.org

60, 108, 172, 136, 134, 70, 74, 40, 50, 43, 1, 0
Offset: 0

Views

Author

Keywords

Comments

The sum-of-divisor function A000203 and aliquot parts A001065 are defined only for positive integers, so the trajectory ends when 0 is reached, here at index 11. - M. F. Hasler, Feb 24 2018

References

  • R. K. Guy, Unsolved Problems in Number Theory, B6.

Crossrefs

Cf. A008885 (starting at 30), ..., A008892 (starting at 276), A098007 (length of aliquot sequences).

Programs

  • Maple
    f := proc(n) option remember; if n = 0 then 60; else sigma(f(n-1))-f(n-1); fi; end:
  • Mathematica
    NestList[If[#==0,0,DivisorSigma[1,#]-#]&,60,80] (* Harvey P. Dale, Nov 29 2013 *)
  • PARI
    a(n,a=60)=for(i=1,n,a=sigma(a)-a);a \\ Will raise an error for n > 11, in agreement with the definition. - M. F. Hasler, Feb 24 2018

Formula

a(n+1) = A001065(a(n)). - R. J. Mathar, Oct 11 2017

Extensions

Edited by M. F. Hasler, Feb 24 2018
Previous Showing 11-20 of 24 results. Next