A160563
Table of the number of (n,k)-Riordan complexes, read by rows.
Original entry on oeis.org
1, 1, 1, 9, 10, 1, 225, 259, 35, 1, 11025, 12916, 1974, 84, 1, 893025, 1057221, 172810, 8778, 165, 1, 108056025, 128816766, 21967231, 1234948, 28743, 286, 1, 18261468225, 21878089479, 3841278805, 230673443, 6092515, 77077, 455, 1, 4108830350625, 4940831601000
Offset: 0
Triangle starts:
[0] 1;
[1] 1, 1;
[2] 9, 10, 1;
[3] 225, 259, 35, 1;
[4] 11025, 12916, 1974, 84, 1;
[5] 893025, 1057221, 172810, 8778, 165, 1;
[6] 108056025, 128816766, 21967231, 1234948, 28743, 286, 1;
.
For row 3: F(x) := 1/cos(x). Then 225*F(x) + 259*(d/dx)^2(F(x)) + 35*(d/dx)^4(F(x)) + (d/dx)^6(F(x)) = 720*(1/cos(x))^7, where F^(r) denotes the r-th derivative of F(x).
-
t := proc(n,k) option remember ; expand(x*mul(x+n/2-i,i=1..n-1)) ; coeftayl(%,x=0,k) ; end:
v := proc(n,k) option remember ; 4^(n-k)*t(2*n+1,2*k+1) ; end:
A160563 := proc(n,k) abs(v(n,k)) ; end: for n from 0 to 10 do for k from 0 to n do printf("%d,",A160563(n,k)) ; od: od: # R. J. Mathar, May 20 2009
# Using a bivariate generating function (albeit generating signed terms):
gf := (t + sqrt(1 + t^2))^x: ser := series(gf, t, 20):
ct := n -> coeff(ser, t, n): T := (n, k) -> n!*coeff(ct(n), x, k):
OddPart := (T, len) -> local n, k;
seq(print(seq(T(n, k), k = 1..n, 2)), n = 1..2*len, 2):
OddPart(T, 6); # Peter Luschny, Mar 03 2024
-
t[, 0] = 1; t[n, n_] := t[n, n] = ((2*n - 1)!!)^2; t[n_, k_] := t[n, k] = (2*n - 1)^2*t[n - 1, k - 1] + t[n - 1, k];
T[n_, k_] := t[n, n - k];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 28 2017, after R. J. Mathar's comment *)
A162445
A sequence related to the Beta function.
Original entry on oeis.org
1, 8, 384, 46080, 2064384, 3715891200, 392398110720, 1428329123020800, 274239191619993600, 1678343852714360832000, 102043306245033138585600, 4714400748520531002654720000, 160144566965128191597871104000
Offset: 0
-
Denominator[Table[EulerE[2n]/(4n)!!,{n,0,20}]] (* Harvey P. Dale, Jun 23 2013 *)
A346543
a(n) = [x^n] Product_{k=1..2*n} (x + (2*k-1)^2).
Original entry on oeis.org
1, 10, 1974, 1234948, 1601489318, 3541644282540, 11934462103156540, 56947950742822581960, 365458809637016986262790, 3035813466162156094097686300, 31694033885101849517370941522644, 406222401519003083851664224927890360, 6271146756206887832796744632163811733084
Offset: 0
(1/3!) * (arcsin(x))^3 = x^3/3! + 10 * x^5/5! + ... . So a(1) =10.
(1/5!) * (arcsin(x))^5 = x^5/5! + 35 * x^7/7! + 1974 * x^9/9! + ... . So a(2) = 1974.
-
Table[SeriesCoefficient[Product[(x + (2*k-1)^2), {k, 1, 2*n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 16 2021 *)
-
a(n) = polcoef(prod(k=1, 2*n, x+(2*k-1)^2), n);
A370705
Triangle read by rows: T(n, k) = numerator(CF(n, k)) where CF(n, k) = n! * [x^k] [t^n] (t/2 + sqrt(1 + (t/2)^2))^(2*x).
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, -1, 0, 1, 0, 0, -1, 0, 1, 0, 9, 0, -5, 0, 1, 0, 0, 4, 0, -5, 0, 1, 0, -225, 0, 259, 0, -35, 0, 1, 0, 0, -36, 0, 49, 0, -14, 0, 1, 0, 11025, 0, -3229, 0, 987, 0, -21, 0, 1, 0, 0, 576, 0, -820, 0, 273, 0, -30, 0, 1
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 0, 1;
[3] 0, -1, 0, 1;
[4] 0, 0, -1, 0, 1;
[5] 0, 9, 0, -5, 0, 1;
[6] 0, 0, 4, 0, -5, 0, 1;
[7] 0, -225, 0, 259, 0, -35, 0, 1;
[8] 0, 0, -36, 0, 49, 0, -14, 0, 1;
[9] 0, 11025, 0, -3229, 0, 987, 0, -21, 0, 1;
- Johan Frederik Steffensen, On a class of quadrature formulae. Proceedings of the International Mathematical Congress Toronto 1924, Vol 2, pp. 837-844.
- P. L. Butzer, M. Schmidt, E. L. Stark and L. Vogt. Central factorial numbers; their main properties and some applications, Num. Funct. Anal. Optim., 10 (1989) 419-488.
- Leonard Carlitz and John Riordan, The Divided Central Differences of Zero, Canadian Journal of Mathematics, Volume 15, 1963, pp. 94-100.
- P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., (2) 19 (1919), 75-113; Coll. Papers II, pp. 303-341.
- Johan Frederik Steffensen, On the Definition of the Central Factorial, Journal of the Institute of Actuaries, Volume 64, Issue 2, July 1933, pp. 165-168.
See the discussion by Sloane in
A008955 of Riordan's notation. In particular, the notation 'T' below does not refer to the present triangle.
Central factorials (rational, general case): (this triangle) /
A370703;
t(2n, 2k) (first kind, 'even case')
A204579; (signed, T(n, 0) missing)
|t(2n, 2k)|
A269944; (unsigned, T(n, 0) = 0^n)
-
gf := (t/2 + sqrt(1 + (t/2)^2))^(2*x): ser := series(gf, t, 20):
ct := n -> n!*coeff(ser, t, n):
T := (n, k) -> numer(coeff(ct(n), x, k)):
seq(seq(T(n, k), k = 0..n), n = 0..10);
# Filtering the central factorials of the first resp. second kind:
CF1 := (T,len) -> local n,k; seq(print(seq(T(n,k), k=0..n, 2)), n = 0..len, 2);
CF2 := (T,len) -> local n,k; seq(print(seq(T(n,k), k=1..n, 2)), n = 1..len, 2);
A380570
Triangle T(n, k) read by rows: Row n gives the coefficients of the even powers in Product_{t=1..n}(2*x - (2*t - 1))*Product_{t=1..n}(2*x + (2*t - 1)).
Original entry on oeis.org
1, 4, -1, 16, -40, 9, 64, -560, 1036, -225, 256, -5376, 31584, -51664, 11025, 1024, -42240, 561792, -2764960, 4228884, -893025, 4096, -292864, 7358208, -79036672, 351475696, -515267064, 108056025, 16384, -1863680, 78926848, -1559683840, 14763100352, -61460460880, 87512357916
Offset: 0
Triangle begins:
n \ k: 0 1 2 3 4 5 6
x^0 x^2 x^4 x^6 x^8 x^10 x^12
[0] 1;
[1] 4, -1;
[2] 16, -40, 9;
[3] 64, -560, 1036, -225;
[4] 256, -5376, 31584, -51664, 11025;
[5] 1024, -42240, 561792, -2764960, 4228884, -893025;
[6] 4096, -292864, 7358208, -79036672, 351475696, -515267064, 108056025;
...
Cf.
A001818 (absolute values of main diagonal).
Cf.
A001824 (1/4 of absolute values of second diagonal).
Cf.
A001825 (1/16 of absolute values of second diagonal).
-
T(n, k) = Vec(prod(k=1,n,2*x-(2*k-1))*prod(k=1,n,2*x+(2*k-1)))[1+2*k]
Comments