cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A105516 Number of times 6 is the leading digit of the first n+1 Fibonacci numbers in decimal representation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Prepend[Accumulate[If[First[IntegerDigits[#]]==6,1,0]&/@Fibonacci[ Range[ 110]]],0] (* Harvey P. Dale, Feb 18 2011 *)
  • PARI
    (leadingdigit(n, b=10) = n \ 10^logint(n, b));
    (isok(n) = leadingdigit(fibonacci(n))==6);
    (lista(n)=my(a=vector(1+n), r=0); for (i=1, n, r+=isok(i); a[1+i]=r); a) \\ Winston de Greef, Mar 17 2023

Formula

a(n) = #{k: A008963(k) = 6 and 0<=k<=n};
a(A105506(n)) = a(A105506(n) - 1) + 1;
n = A105511(n) + A105512(n) + A105513(n) + A105514(n) + A105515(n) + a(n) + A105517(n) + A105518(n) + A105519(n).
a(n) ~ log_10(7/6) * n. - Amiram Eldar, Jan 12 2023

A105517 Number of times 7 is the leading digit of the first n+1 Fibonacci numbers in decimal representation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[If[IntegerDigits[Fibonacci[n]][[1]]==7,1,0],{n,0,120}]] (* Harvey P. Dale, Apr 29 2018 *)
  • PARI
    (leadingdigit(n, b=10) = n \ 10^logint(n, b));
    (isok(n) = leadingdigit(fibonacci(n))==7);
    (lista(n)=my(a=vector(1+n), r=0); for (i=1, n, r+=isok(i); a[1+i]=r); a) \\ Winston de Greef, Mar 17 2023

Formula

a(n) = #{k: A008963(k) = 7 and 0<=k<=n};
a(A105507(n)) = a(A105507(n) - 1) + 1;
n = A105511(n) + A105512(n) + A105513(n) + A105514(n) + A105515(n) + A105516(n) + a(n) + A105518(n) + A105519(n).
a(n) ~ log_10(8/7) * n. - Amiram Eldar, Jan 12 2023

A105518 Number of times 8 is the leading digit of the first n+1 Fibonacci numbers in decimal representation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[If[IntegerDigits[Fibonacci[n]][[1]] == 8, 1, 0], {n, 0, 100}]] (* Amiram Eldar, Jan 12 2023 *)
  • PARI
    (leadingdigit(n, b=10) = n \ 10^logint(n, b));
    (isok(n) = leadingdigit(fibonacci(n))==8);
    (lista(n)=my(a=vector(1+n), r=0); for (i=1, n, r+=isok(i); a[1+i]=r); a) \\ Winston de Greef, Mar 17 2023

Formula

a(n) = #{k: A008963(k) = 8 and 0<=k<=n};
a(A105508(n)) = a(A105508(n) - 1) + 1;
n = A105511(n) + A105512(n) + A105513(n) + A105514(n) + A105515(n) + A105516(n) + A105517(n) + a(n) + A105519(n).
a(n) ~ log_10(9/8) * n. - Amiram Eldar, Jan 12 2023

A105503 Numbers n such that 3 is the leading digit of the n-th Fibonacci number in decimal representation.

Original entry on oeis.org

4, 9, 14, 28, 33, 38, 52, 57, 71, 76, 81, 95, 100, 105, 119, 124, 138, 143, 148, 162, 167, 172, 181, 186, 191, 205, 210, 215, 229, 234, 239, 248, 253, 258, 272, 277, 282, 296, 301, 306, 315, 320, 325, 339, 344, 349, 363, 368, 382, 387, 392, 406, 411, 416, 430
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Comments

A008963(a(n)) = 3; A105513(a(n)) = A105513(a(n) - 1) + 1.

Examples

			a(10)=76: A008963(76) = A000030(A000045(76)) =
A000030(3416454622906707) = 3.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[{n,Fibonacci[n]},{n,450}],First[IntegerDigits[#[[2]]]]==3&][[All,1]] (* Harvey P. Dale, Apr 13 2019 *)
  • PARI
    is(n)=digits(fibonacci(n))[1]==3 \\ Charles R Greathouse IV, Oct 07 2016

Formula

a(n) ~ kn by the equidistribution theorem, where k = log(10)/(log(4) - log(3)) = 8.00392.... - Charles R Greathouse IV, Oct 07 2016

Extensions

Definition clarified by Harvey P. Dale, Apr 13 2019

A105504 Numbers m such that 4 is the leading digit of the n-th Fibonacci number in decimal representation.

Original entry on oeis.org

19, 24, 43, 48, 62, 67, 72, 86, 91, 110, 115, 129, 134, 153, 158, 177, 182, 196, 201, 220, 225, 244, 249, 263, 268, 287, 292, 311, 316, 330, 335, 354, 359, 373, 378, 383, 397, 402, 421, 426, 440, 445, 450, 464, 469, 488, 493, 507, 512, 517, 531, 536, 555, 560
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Comments

A008963(a(n)) = 4; A105514(a(n)) = A105514(a(n) - 1) + 1.

Examples

			a(10)=110: A008963(110) = A000030(A000045(110)) =
A000030(43566776258854844738105) = 4.
		

Crossrefs

Programs

Formula

a(n) ~ kn by the equidistribution theorem, where k = log(10)/(log(5) - log(4)) = 10.318851.... - Charles R Greathouse IV, Oct 07 2016

A105506 Numbers m such that 6 is the leading digit of the n-th Fibonacci number in decimal representation.

Original entry on oeis.org

15, 20, 39, 63, 82, 87, 106, 130, 149, 154, 173, 197, 216, 221, 240, 259, 264, 283, 288, 307, 326, 331, 350, 355, 374, 393, 398, 417, 422, 441, 460, 465, 484, 508, 527, 532, 551, 575, 594, 599, 618, 642, 661, 666, 685, 709, 728, 733, 752, 771, 776, 795, 800
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Comments

A008963(a(n)) = 6; A105516(a(n)) = A105516(a(n) - 1) + 1.

Examples

			a(10)=154: A008963(154) = A000030(A000045(154)) =
A000030(68330027629092351019822533679447) = 6.
		

Crossrefs

Programs

Formula

a(n) ~ kn by the equidistribution theorem, where k = log(10)/(log(7) - log(6)) = 14.9372.... - Charles R Greathouse IV, Oct 07 2016

A105507 Numbers m such that 7 is the leading digit of the n-th Fibonacci number in decimal representation.

Original entry on oeis.org

25, 44, 49, 68, 92, 111, 116, 135, 159, 178, 183, 202, 226, 245, 250, 269, 293, 312, 317, 336, 360, 379, 384, 403, 427, 446, 470, 489, 494, 513, 537, 556, 561, 580, 604, 623, 628, 647, 671, 690, 695, 714, 738, 757, 762, 781, 805, 824, 829, 848, 872, 891, 915
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Comments

A008963(a(n)) = 7; A105517(a(n)) = A105517(a(n) - 1) + 1.

Examples

			a(10)=178: A008963(178) = A000030(A000045(178)) =
A000030(7084593923980518516849609894969925639) = 7.
		

Crossrefs

Programs

Formula

a(n) ~ kn by the equidistribution theorem, where k = log(10)/(log(8) - log(7)) = 17.24377.... - Charles R Greathouse IV, Oct 07 2016

A105508 Numbers m such that 8 is the leading digit of the m-th Fibonacci number in decimal representation.

Original entry on oeis.org

6, 11, 30, 54, 73, 78, 97, 121, 140, 145, 164, 188, 207, 231, 255, 274, 298, 322, 341, 365, 389, 408, 432, 451, 456, 475, 499, 518, 523, 542, 566, 585, 590, 609, 633, 652, 676, 700, 719, 743, 767, 786, 810, 834, 853, 877, 896, 901, 920, 944, 963, 968, 987
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Examples

			a(1)=6 since the 6th Fibonacci: 8 begins with 8.
a(2)=11 since the 11th Fibonacci: 89 begins with 8.
		

Crossrefs

Programs

Formula

A008963(a(n)) = A000030(A000045(a(n))) = 8.
A105518(a(n)) = A105518(a(n) - 1) + 1.
A000045(a(n)) = A045732(n).
a(n) ~ kn by the equidistribution theorem, where k = log(10)/(log(9) - log(8)) = 19.549378.... - Charles R Greathouse IV, Oct 07 2016

Extensions

Example and formulas edited by Michel Marcus, Jan 10 2014

A105509 Numbers m such that 9 is the leading digit of the m-th Fibonacci number in decimal representation.

Original entry on oeis.org

16, 35, 59, 83, 102, 126, 150, 169, 193, 212, 236, 260, 279, 303, 327, 346, 370, 394, 413, 437, 461, 480, 504, 528, 547, 571, 595, 614, 638, 657, 681, 705, 724, 748, 772, 791, 815, 839, 858, 882, 906, 925, 949, 973, 992, 1016, 1040, 1059, 1083, 1102, 1107
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Comments

A008963(a(n)) = 9; A105519(a(n)) = A105519(a(n) - 1) + 1.
Comment from Jonathan Vos Post, Dec 23 2006: Peterson says: "Calculate 100/89 = 1.1235955056... This fraction generates the first five Fibonacci numbers before blurring into other digits. ... 10000/9899 = 1.0102030508132134559046368... generates the first 10 Fibonacci numbers (using two digits per number). 1000000/998999 generates the first 15 Fibonacci numbers (using three digits per number). ... in successive fractions, two 0's are appended to the numerator and a 9 to the beginning and end of the denominator...."

Examples

			a(10)=21: A008963(212) = A000030(A000045(212)) =
A000030(90343046356137747723758225621187571439538669) = 9.
		

Crossrefs

Programs

Formula

m such that d(m+5)-d(m) = 2 for d(m) = floor(1 + log_10(F(m))) and F(m) = m-th Fibonacci number = A000045(m). - Jonathan Vos Post, Dec 23 2006
a(n) ~ k*n by the equidistribution theorem, where k = 1/(1 - log(9)/log(10)) = 21.8543.... - Charles R Greathouse IV, Oct 07 2016

A138844 Concatenation of initial and final digits of n-th positive Fibonacci number.

Original entry on oeis.org

11, 11, 22, 33, 55, 88, 13, 21, 34, 55, 89, 14, 23, 37, 60, 97, 17, 24, 41, 65, 16, 11, 27, 48, 75, 13, 18, 31, 59, 80, 19, 29, 38, 57, 95, 12, 27, 39, 66, 15, 11, 26, 47, 73, 10, 13, 23, 46, 79, 15, 24, 39, 53, 82, 15, 27, 32, 59, 91, 10, 21, 41, 62, 13, 15, 28, 43, 71, 14
Offset: 1

Views

Author

Omar E. Pol, Apr 02 2008

Keywords

Comments

Also, concatenation of A008963(n) and A003893(n).

Examples

			a(15) = 60 because the 15th positive Fibonacci number is 610 and the concatenation of initial and final digits of 610 is 60.
		

Crossrefs

Programs

  • Maple
    a:= n-> (f-> parse(cat(f[1], f[-1])))(""||(combinat[fibonacci](n))):
    seq(a(n), n=1..92);  # Alois P. Heinz, Nov 23 2023
  • Mathematica
    FromDigits[Join[{IntegerDigits[#][[1]]},{IntegerDigits[#][[-1]]}]]&/@ Fibonacci[Range[70]] (* Harvey P. Dale, Jun 15 2018 *)
Previous Showing 11-20 of 25 results. Next