cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A177063 Number of Pythagorean triangles with area n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

M. F. Hasler, Dec 09 2010

Keywords

Comments

The first term > 1 is a(210) = 2, cf. A009127, A055193 and A024407. Up to there the sequence coincides with the characteristic function of A009112. The triangles are not necessarily primitive.

Crossrefs

Programs

  • PARI
    a(n)=my(N=1+#n=divisors(2*n));sum(i=1,N\2,issquare(n[i]^2+n[N-i]^2));

Extensions

Secondary offset added by Antti Karttunen, Nov 24 2017

A228874 a(n) = L(n) * L(n+1) * L(n+2) * L(n+3), the product of four consecutive Lucas numbers, A000032.

Original entry on oeis.org

24, 84, 924, 5544, 40194, 269874, 1864584, 12741324, 87431844, 599001144, 4106310474, 28143249834, 192901471224, 1322153872644, 9062210132844, 62113226746824, 425730613530834, 2918000448971874, 20000274149827944, 137083914357154044, 939587137457703924
Offset: 0

Views

Author

T. D. Noe, Sep 24 2013

Keywords

Comments

Mohanty and Mohanty prove in Corollary 2.6 that these numbers are Pythagorean. The number a(n) is primitive Pythagorean if Lucas(n) and Lucas(n+1) have opposite parity. Every third number, starting at a(1) = 84, is not primitive Pythagorean.
Since a(n) = L(n+1)*L(n+2)*(L(n+2)^2-L(n+1)^2), these numbers are in A073120, - Robert Israel, Apr 06 2015

Crossrefs

Cf. A000032 (Lucas numbers), A228873 (similar sequence for Fibonacci numbers).
Cf. A009112 (Pythagorean numbers), A024365, A073120.

Programs

  • Maple
    L:= n -> 2*combinat:-fibonacci(n+1)-combinat:-fibonacci(n):
    seq(mul(L(n+i),i=0..3),n=0..30); # Robert Israel, Apr 06 2015
  • Mathematica
    Table[LucasL[n] LucasL[n+1] LucasL[n+2] LucasL[n+3], {n, 0, 25}]
    Times@@@Partition[LucasL[Range[0,30]],4,1] (* Harvey P. Dale, Jul 11 2017 *)
  • PARI
    Vec(6*(x^4-4*x^3-24*x^2+6*x-4)/((x-1)*(x^2-7*x+1)*(x^2+3*x+1)) + O(x^100)) \\ Colin Barker, Oct 29 2013

Formula

G.f.: 6*(x^4-4*x^3-24*x^2+6*x-4) / ((x-1)*(x^2-7*x+1)*(x^2+3*x+1)). - Colin Barker, Oct 29 2013
From Robert Israel, Apr 06 2015: (Start)
a(n+5) = 5*a(n+4) + 15*a(n+3) - 15*a(n+2) - 5*a(n+1) + a(n).
a(n) = -A228873(n+3) + 4*A228873(n+2) + 24*A228873(n+1) - 6*A228873(n) + 4*A228873(n-1) for n >= 2. (End)
Sum_{n>=0} 1/a(n) = (10 - 3*sqrt(5))/60. - Diego Rattaggi, Aug 16 2021

A364169 Smallest integer m = b*c which satisfies (b + c)*n = m - 1.

Original entry on oeis.org

6, 21, 40, 105, 126, 301, 204, 273, 550, 1221, 936, 697, 690, 3165, 2176, 4641, 1242, 1333, 4200, 8841, 1786, 3213, 2508, 15025, 9126, 18981, 3700, 6105, 13950, 3901, 3876, 4161, 6106, 5781, 23976, 49321, 8178, 6765, 32800, 67281, 6930, 18565, 7440, 11001, 49726, 8925, 9072, 26977
Offset: 1

Views

Author

Jose Aranda, Jul 12 2023

Keywords

Comments

All terms have b,c > 1.
a(n) is the smallest of a certain n-class. The 1-class would be related to the numbers denoted as "pqrs" in A009112.
From David A. Corneth, Jul 19 2023: (Start)
n < min(b, c) <= 2*n.
Proof of n < min(b, c):
As m = b*c and (b + c)*n = m - 1 we have m - (m - 1) = 1 = b*c - (b + c)*n.
Solving 1 = b*c = (b + c)*n for c gives c = (n*b + 1) / (b - n) > 0.
As 0 < b, c, n we have b - n > 0 so b > n.
Similarily as b = (n*c + 1)/(c - n) we have c > n.
Proof of min(b, c) <= 2*n by contradiction.
Suppose 2*n < min(b, c). Then 2*n + 1 <= min(b, c) as both b and c are integers.
Let b = 2n + b' and c = 2n + c' where 1 <= b', c', n. Then
1 = b*c - (b + c)*n = (2n + c') * (2n + b') - (2n + c' + 2n + b') * n = (b' + c')*n + c'*b' > 1. A contradiction. Q.e.d. (End)

Examples

			a(1) = 6 as 6 = 2*3, with (2 + 3)*1 = 6 - 1.
a(2) = 21 as 21 = 3*7, with (3 + 7)*2 = 21 - 1.
a(6) = 301 as 301 = 7*43, with (7 + 43)*6 = 301 - 1.
		

Crossrefs

Cf. A009112 ("1-pqrs" numbers), A364171 (increasing m).

Programs

  • Maple
    f:= proc(n) local t,d,b,c,m;
       d:= max(select(`<=`,numtheory:-divisors(n^2+1),n));
       b:= d+n;
       c:= (n^2+1)/d + n;
       b*c
    end proc:
    map(f, [$1..100]); # Robert Israel, Jul 19 2023
  • Mathematica
    seq[max_] := Module[{len = Floor[Sqrt[max]/2], s, r}, s = Table[max + 1, {len}]; Do[r = (b*c - 1)/(b + c); If[IntegerQ[r] && r <= len && b*c < s[[r]], s[[r]] = b*c], {b, 2, max}, {c, 2, max/b}]; TakeWhile[s, # <= max &]]; seq[70000] (* Amiram Eldar, Jul 12 2023 *)
  • PARI
    a(n) = for (x=1, oo, my(d=divisors(x)); for (i=1, #d\2, b = d[i]; c = x/d[i]; if ((b+c)*n == (x-1), return(x)););); \\ Michel Marcus, Jul 12 2023
    
  • PARI
    a(n) = {forstep(i = 1, oo, n, if(iscan(i, n), return(i)))}
    iscan(c, n) = {D = (1 - c)^2 - 4*n^2*c; if(!issquare(D), return(0)); b = ((c - 1) + sqrtint((1-c)^2 - 4*n^2*c)) / (2*n); if(denominator(b) == 1, return(1))} \\ David A. Corneth, Jul 12 2023
    
  • PARI
    a(n) = {res = oo; for(b = n+1, 2*n, c = (n*b + 1)/(b - n); if(denominator(c) == 1, res = min(res, b*c))); res} \\ David A. Corneth, Jul 19 2023
    
  • PARI
    a(n) = my(d = divisors(n^2 + 1), t = d[#d \ 2], b = t+n, c = (n^2 + 1)/t + n); return(b*c) \\ David A. Corneth, Jul 20 2023, adapted from Robert Israel, Jul 19 2023

Extensions

More terms from Michel Marcus, Jul 12 2023

A057228 a(n) = u * v = x * y with (u - v) = (x + y) = A009000(n) (u>v, y>0, v>0, x>0, y>0).

Original entry on oeis.org

6, 24, 30, 54, 60, 96, 84, 150, 120, 210, 216, 240, 294, 210, 270, 384, 180, 486, 336, 600, 540, 480, 630, 726, 840, 864, 330, 504, 750, 924, 1014, 960, 1176, 1320, 840, 756, 1350, 1080, 1536, 720, 546, 1386, 1500, 1734, 1890, 1560, 1944, 1470, 2166
Offset: 1

Views

Author

Naohiro Nomoto, Sep 19 2000

Keywords

Comments

Areas of Pythagorean triangles.

Examples

			a(1) = 6 = 6 * 1 = 3 * 2, (6 - 1)=(3 + 2) = 5 = A009000(1).
		

Crossrefs

Programs

  • PARI
    list(lim) = {my(lh = List()); for(u = 2, sqrtint(lim), for(v = 1, u, if (u^2+v^2 > lim, break); if ((gcd(u, v) == 1) && (0 != (u-v)%2), for (i = 1, lim, if (i*(u^2+v^2) > lim, break); /* if (u^2 - v^2 < 2*u*v, w = [i*(u^2 - v^2), i*2*u*v, i*(u^2+v^2)], w = [i*2*u*v, i*(u^2 - v^2), i*(u^2+v^2)]); */ listput(lh, [i*(u^2+v^2), i^2*(u^2 - v^2)*u*v]); ); ); ); ); lh = vecsort(Vec(lh)); vector(#lh, i, lh[i][2])} \\ David A. Corneth, Apr 10 2021, adapted from A009000

Extensions

Offset changed to 1 by David A. Corneth, Apr 10 2021

A057101 Area of a Pythagorean triangle (ordered by the product of the sides).

Original entry on oeis.org

6, 24, 30, 54, 60, 96, 84, 120, 150, 210, 216, 180, 210, 240, 294, 270, 384, 336, 330, 486, 480, 540, 600, 504, 630, 726, 546, 840, 750, 864, 756, 720, 924, 840, 960, 1014, 1176, 1080, 840, 1320, 990, 1350, 1386, 1536, 1500, 1470, 1344, 1560, 1734, 1320
Offset: 1

Views

Author

Henry Bottomley, Aug 01 2000

Keywords

Examples

			a(1)=3*4/2=6 since 3*4*5=60 is smallest possible positive product
		

Crossrefs

Formula

a(n) =A057096(n)/(2*A057100(n)) =A057098(n)*A057099(n)/2

A177887 The areas of Pythagorean triangles divided by 6.

Original entry on oeis.org

1, 4, 5, 9, 10, 14, 16, 20, 25, 30, 35, 36, 40, 45, 49, 55, 56, 64, 80, 81, 84, 90, 91, 100, 105, 120, 121, 125, 126, 140, 144, 154, 160, 165, 169, 180, 196, 204, 220, 224, 225, 231, 245, 250, 256, 260, 270, 285, 286, 289, 315, 320, 324, 336, 350, 360, 361, 364, 385, 390
Offset: 1

Views

Author

Robert G. Wilson v, Dec 14 2010

Keywords

Comments

Number of terms less than 10^k: 4, 23, 109, 462, 1861, 7255, 27042, 95703, 314534, ..., .
This is A009112/6. - T. D. Noe, Oct 08 2013
Same as A256418/24, i.e., congrua/24. - Jonathan Sondow, Nov 07 2017

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, The Queen of Mathematics Entertains, 2nd Ed., Chpt. XIV, "The Eternal Triangle", pp. 104-134, Dover Publ., NY, 1964.

Crossrefs

Programs

  • Mathematica
    (* First run the program given for A009112 *) Union[t/6]

Formula

A009112(n)/6.

A231328 Integer areas of the reflection triangles of integer-sided triangles.

Original entry on oeis.org

18, 72, 90, 162, 180, 252, 288, 360, 450, 540, 630, 648, 720, 810, 882, 990, 1008, 1152, 1440, 1458, 1512, 1620, 1638, 1800, 1890, 2160, 2178, 2250, 2268, 2520, 2592, 2772, 2880, 2970, 3042, 3240, 3528, 3672, 3960, 4032, 4050, 4158, 4410, 4500, 4608, 4680, 4860
Offset: 1

Views

Author

Michel Lagneau, Nov 07 2013

Keywords

Comments

The triangle A'B'C' obtained by reflecting the vertices of a reference triangle ABC about the opposite sides is called the reflection triangle (Grinberg 2003).
The area of the reflection triangle is given by
A' = A*t/(a^2*b^2*c^2) where A is the area of the reference triangle of sides (a, b, c) and
t=-(a^6-b^2*a^4-c^2*a^4-b^4*a^2-c^4*a^2-b^2*c^2*a^2+b^6+c^6-b^2*c^4-b^4*c^2)/(a^2*b^2*c^2).
See the link for the side lengths of the reflection triangles.
Properties of this sequence:
The areas corresponding to the primitive reflection triangles are 18, 90, 180, 252, 540,...
The non-primitive triangles of areas 4*a(n),9*a(n),...,p^2*a(n),... are in the sequence.
It appears that one of the side of the reflection triangles equals the greatest side of the initial triangle (see the table below), and the initial triangles are Pythagorean triangles => a(n) = 3*A009112(n).
The following table gives the first values (A, A', a, b, c, a', b', c') where A' is the area of the reflection triangles, A is the area of the initial triangles, a, b, c are the integer sides of the initial triangles, and a', b', c' are the sides of the reflection triangles.
-------------------------------------------------------------------------
| A' | A | a | b | c | a' | b' | c'|
-------------------------------------------------------------------------
| 18 | 6 | 3 | 4 | 5 | 9*sqrt(17)/5 | 4*sqrt(97)/5 | 5 |
| 72 | 24 | 6 | 8 | 10 | 18*sqrt(17)/5 | 8*sqrt(97)/5 | 10 |
| 90 | 30 | 5 | 12 | 13 | 5*sqrt(1321)/13 | 36*sqrt(41)/13 | 13 |
| 162 | 54 | 9 | 12 | 15 | 27*sqrt(17)/5 | 12*sqrt(97)/5 | 15 |
| 180 | 60 | 8 | 15 | 17 | 8*sqrt(2089)/17 | 45*sqrt(89)/17 | 17 |
| 252 | 84 | 7 | 24 | 25 | 7*sqrt(5233)/25 | 72*sqrt(113)/25 | 25 |
| 288 | 96 | 12 | 16 | 20 | 36*sqrt(17)/5 | 16*sqrt(97)/5 | 20 |
| 360 | 120 | 10 | 24 | 26 | 10*sqrt(1321)/13 | 72*sqrt(41)/13 | 26 |
| 450 | 150 | 15 | 20 | 25 | 9*sqrt(17) | 4*sqrt(97) | 25 |
| 540 | 180 | 9 | 40 | 41 | 27*sqrt(1609)/41 | 40*sqrt(2329)/41 | 41 |
| 630 | 210 | 12 | 35 | 37 | 36*sqrt(1241)/37 | 35*sqrt(2521)/37 | 37 |
| 648 | 216 | 18 | 24 | 30 | 54*sqrt(17)/5 | 24*sqrt(97)/5 | 30 |
.......................................................................

Examples

			18 is in the sequence. We use two ways:
First way: with the triangle (3, 4, 5) the formula A' = A*t/(a^2*b^2*c^2) gives directly the result: A'= 18 where the area A = 6 is obtained by Heron's formula A =sqrt(s*(s-a)*(s-b)*(s-c))= sqrt(6*(6-3)*(6-4)*(6-5)) = 6, where s is the semiperimeter.
Second way: by calculation of the sides a', b', c' and by using Heron's formula. We obtain from the formulas given in the link:
a' = 9*sqrt(17)/5;
b' = 4*sqrt(97/5);
c' = 5.
Now, we use Heron's formula with (a',b',c'). We find A'=sqrt(s1*(s1-a')*(s1-b')*(s1-c')) with:
s1 =(a'+b'+c')/2 = (9*sqrt(17)/5+ 4*sqrt(97/5)+ 5)/2. We find A'= 18.
		

References

  • D. Grinberg, On the Kosnita Point and the Reflection Triangle, Forum Geom. 3, 105-111, 2003.

Crossrefs

Programs

  • Mathematica
    nn = 300 ; lst = {}; Do[s = (a + b + c)/2 ; If[IntegerQ[s],area2 = s (s-a)(s-b) (s-c); If[area2 > 0 && IntegerQ[Sqrt[area2] + (a^2 + b^2 + c^2)/8], AppendTo[lst, Sqrt[area2] + (a^2 + b^2 + c^2)/8]]],{a,nn},{b,a},{c,b}] ; Union[lst]
Previous Showing 21-27 of 27 results.