cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 60 results. Next

A295313 a(n) = gcd(sigma(n), phi(sigma(n))).

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 4, 1, 1, 6, 4, 4, 2, 8, 8, 1, 6, 3, 4, 6, 16, 12, 8, 4, 1, 6, 8, 8, 2, 24, 16, 9, 16, 18, 16, 1, 2, 4, 8, 6, 6, 32, 4, 12, 6, 24, 16, 4, 3, 3, 24, 14, 18, 8, 24, 8, 16, 6, 4, 24, 2, 32, 8, 1, 12, 48, 4, 18, 32, 48, 24, 3, 2, 6, 4, 4, 32, 24, 16, 6, 11, 18, 12, 32, 36, 4, 8, 12, 6, 18, 16, 24, 64, 48, 8
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2017

Keywords

Crossrefs

Programs

  • PARI
    a(n) = my(sn = sigma(n)); gcd(sn, eulerphi(sn)); \\ Michel Marcus, Nov 23 2017

Formula

a(n) = A009195(A000203(n)).

A295314 a(n) = sigma(n) / gcd(sigma(n), phi(sigma(n))).

Original entry on oeis.org

1, 3, 2, 7, 3, 3, 2, 15, 13, 3, 3, 7, 7, 3, 3, 31, 3, 13, 5, 7, 2, 3, 3, 15, 31, 7, 5, 7, 15, 3, 2, 7, 3, 3, 3, 91, 19, 15, 7, 15, 7, 3, 11, 7, 13, 3, 3, 31, 19, 31, 3, 7, 3, 15, 3, 15, 5, 15, 15, 7, 31, 3, 13, 127, 7, 3, 17, 7, 3, 3, 3, 65, 37, 19, 31, 35, 3, 7, 5, 31, 11, 7, 7, 7, 3, 33, 15, 15, 15, 13, 7, 7, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2017

Keywords

Crossrefs

Programs

  • PARI
    a(n) = my(sn = sigma(n)); sn/gcd(sn, eulerphi(sn)); \\ Michel Marcus, Nov 23 2017

Formula

a(n) = A000203(n) / A295313(n) = A109395(A000203(n)).

A295315 a(n) = phi(sigma(n)) / gcd(sigma(n), phi(sigma(n))).

Original entry on oeis.org

1, 2, 1, 6, 1, 1, 1, 8, 12, 1, 1, 3, 3, 1, 1, 30, 1, 8, 2, 2, 1, 1, 1, 4, 30, 2, 2, 3, 4, 1, 1, 4, 1, 1, 1, 72, 9, 4, 3, 4, 2, 1, 5, 2, 4, 1, 1, 15, 12, 20, 1, 3, 1, 4, 1, 4, 2, 4, 4, 2, 15, 1, 6, 126, 2, 1, 8, 2, 1, 1, 1, 32, 18, 6, 15, 12, 1, 2, 2, 10, 10, 2, 2, 3, 1, 10, 4, 4, 4, 4, 3, 2, 1, 1, 4, 2, 3, 12, 4
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2017

Keywords

Crossrefs

Programs

  • PARI
    a(n) = my(sn = sigma(n)); eulerphi(sn) / gcd(sn, eulerphi(sn)); \\ Michel Marcus, Nov 23 2017

Formula

a(n) = A062401(n) / A295313(n) = A062401(n) / A009195(A000203(n)).
a(n) = A076512(A000203(n)).

A318459 a(n) = gcd(n, tau(n), phi(n)), where tau = A000005 and phi = A000010.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 1, 1, 1, 6, 1, 2, 1, 2, 1, 8, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 8, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 3, 1, 1, 2, 1, 2, 1, 2, 1, 12, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 12, 1, 2, 1, 8, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 3, 1, 1, 2, 1, 8, 1
Offset: 1

Views

Author

Antti Karttunen, Sep 07 2018, after Labos Elemer's A074389

Keywords

Crossrefs

Programs

  • Mathematica
    Table[GCD[n,DivisorSigma[0,n],EulerPhi[n]],{n,110}] (* Harvey P. Dale, Jul 30 2019 *)
  • PARI
    A318459(n) = gcd([n, numdiv(n), eulerphi(n)]);

Formula

a(n) = gcd(n, A000005(n), A000010(n)).
a(n) = gcd(n,A009213(n)) = gcd(A000005(n),A009195(n)) = gcd(A000010(n),A009191(n)).

A326198 Number of positive integers that are reachable from n with some combination of transitions x -> x-phi(x) and x -> gcd(x,phi(x)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 5, 2, 5, 2, 5, 3, 5, 2, 7, 2, 6, 4, 6, 2, 6, 3, 6, 4, 6, 2, 7, 2, 6, 3, 8, 3, 8, 2, 7, 5, 7, 2, 9, 2, 7, 5, 7, 2, 7, 3, 10, 3, 7, 2, 11, 5, 7, 5, 8, 2, 8, 2, 7, 5, 7, 3, 8, 2, 9, 4, 8, 2, 9, 2, 8, 5, 8, 3, 12, 2, 8, 5, 10, 2, 10, 5, 8, 3, 8, 2, 10, 3, 8, 5, 8, 3, 8, 2, 9, 6, 11, 2, 9, 2, 8, 6
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2019

Keywords

Examples

			From n = 12 we can reach any of the following numbers > 0: 12 (with an empty sequence of transitions), 8 (as A051953(12) = 8), 4 (as A009195(12) = A009195(8) = A051953(8) = 4), 2 (as A009195(4) = A051953(4) = 2) and 1 (as A009195(2) = A051953(2) = 1), thus a(12) = 5.
The directed acyclic graph formed from those two transitions with 12 as its unique root looks like this:
    12
    / \
   |   8
    \ /
     4
     |
     2
     |
     1
		

Crossrefs

Programs

  • PARI
    A326198aux(n,xs) = if(vecsearch(xs,n),xs, xs = setunion([n],xs); if(1==n,xs, my(a=gcd(n,eulerphi(n)), b=n-eulerphi(n)); xs = A326198aux(a,xs); if((a==b),xs, A326198aux(b,xs))));
    A326198(n) = length(A326198aux(n,Set([])));

Formula

a(n) > max(A071575(n), A326195(n)).

A326203 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j), where f(n) = 0 if n > 2 and gcd(n,phi(n)) = 1, with f(n) = n for all other numbers.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 3, 11, 3, 12, 3, 13, 14, 15, 3, 16, 17, 18, 19, 20, 3, 21, 3, 22, 3, 23, 3, 24, 3, 25, 26, 27, 3, 28, 3, 29, 30, 31, 3, 32, 33, 34, 3, 35, 3, 36, 37, 38, 39, 40, 3, 41, 3, 42, 43, 44, 3, 45, 3, 46, 3, 47, 3, 48, 3, 49, 50, 51, 3, 52, 3, 53, 54, 55, 3, 56, 3, 57, 3, 58, 3, 59, 3, 60, 61, 62, 3, 63, 3, 64, 65, 66, 3, 67, 3
Offset: 1

Views

Author

Antti Karttunen, Jul 11 2019

Keywords

Comments

For all i, j:
A305801(i) = A305801(j) => a(i) = a(j),
a(i) = a(j) => A009195(i) = A009195(j) => A297086(i) = A297086(j),
a(i) = a(j) => A000001(i) = A000001(j) => A297086(i) = A297086(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    Aux326203(n) = if((n>2) && (1==gcd(n,eulerphi(n))),0,n);
    v326203 = rgs_transform(vector(up_to, n, Aux326203(n)));
    A326203(n) = v326203[n];

A327979 a(n) = gcd(n, A002322(n)), where A002322 is Carmichael lambda, also known as psi.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 4, 1, 6, 1, 4, 3, 2, 1, 2, 5, 2, 9, 2, 1, 2, 1, 8, 1, 2, 1, 6, 1, 2, 3, 4, 1, 6, 1, 2, 3, 2, 1, 4, 7, 10, 1, 4, 1, 18, 5, 2, 3, 2, 1, 4, 1, 2, 3, 16, 1, 2, 1, 4, 1, 2, 1, 6, 1, 2, 5, 2, 1, 6, 1, 4, 27, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 3, 2, 1, 8, 1, 14, 3, 20, 1, 2, 1, 4, 3
Offset: 1

Views

Author

Antti Karttunen, Oct 04 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Array[GCD[#, CarmichaelLambda[#]] &, 100] (* Amiram Eldar, Oct 04 2019 *)
  • PARI
    A327979(n) = gcd(n, lcm(znstar(n)[2]));

Formula

a(n) = gcd(n, A002322(n)).

A009213 a(n) = gcd(d(n), phi(n)), where d is the number of divisors of n (A000005) and phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 4, 3, 4, 2, 2, 2, 2, 4, 1, 2, 6, 2, 2, 4, 2, 2, 8, 1, 4, 2, 6, 2, 8, 2, 2, 4, 4, 4, 3, 2, 2, 4, 8, 2, 4, 2, 2, 6, 2, 2, 2, 3, 2, 4, 6, 2, 2, 4, 8, 4, 4, 2, 4, 2, 2, 6, 1, 4, 4, 2, 2, 4, 8, 2, 12, 2, 4, 2, 6, 4, 8, 2, 2, 1, 4, 2, 12, 4, 2, 4, 8, 2, 12, 4, 2, 4, 2, 4, 4, 2, 6, 6, 1, 2, 8, 2, 8, 8
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A074391 a(n) is the smallest number such that gcd(a(n), sigma(a(n))) = n.

Original entry on oeis.org

1, 10, 15, 12, 95, 6, 91, 56, 153, 40, 473, 24, 117, 182, 135, 336, 1139, 90, 703, 380, 861, 946, 3151, 168, 3725, 468, 1431, 28, 5017, 570, 775, 992, 891, 2176, 4865, 792, 2701, 1406, 585, 280, 6683, 546, 11051, 1892, 1305, 6302, 13207, 528, 4753, 5800
Offset: 1

Views

Author

Labos Elemer, Aug 23 2002

Keywords

Comments

a(n) is the smallest number k such that A017666(k), the denominator of sigma(k)/k, is equal to k/n. - Jaroslav Krizek, Sep 23 2014
Each term a(n) is divisible by its index n. - Michel Marcus, Jan 13 2015

Examples

			n=6: a(6)=6 because gcd(6, sigma(6))=6 and a(6)=6 is the smallest.
		

Crossrefs

Programs

  • Magma
    A074391:=func; [A074391(n): n in[1..100]] // Jaroslav Krizek, Sep 23 2014
    
  • Maple
    f:= proc(n) local k;
      for k from n by n do
        if igcd(k, numtheory:-sigma(k))=n then return k fi
      od
    end proc:
    map(f, [$1..100]); # Robert Israel, Feb 11 2020
  • Mathematica
    f[x_] := GCD[DivisorSigma[1, x], x] t=Table[0, {100}]; Do[s=f[n]; If[s<101&&t[[s]]==0, t[[s]]=n], {n, 1, 1000000}];
  • PARI
    a(n) = my(k=1); while (gcd(sigma(k), k) != n, k++); k; \\ Michel Marcus, Jan 13 2015

Formula

a(n) = Min{x; gcd(x, sigma(x))} = Min{x; gcd(x, A000203(x))} = n. - corrected by Michel Marcus, Jan 13 2015

A098204 Greatest common divisor of multiperfect numbers and their totient.

Original entry on oeis.org

1, 2, 4, 8, 16, 96, 64, 864, 72, 1536, 252, 69120, 4096, 86400, 4608, 256, 768, 24576, 65536, 570240, 217728, 691200, 81920, 1105920, 262144, 245760, 516096, 9676800, 26544672, 50181120, 1741824, 2145024, 226437120, 103028889600, 12597120
Offset: 1

Views

Author

Labos Elemer, Sep 23 2004

Keywords

Crossrefs

Formula

a(n) = gcd( A007691(n), A000010(A007691(n)) ).
a(n) = A009195(A007691(n)). - Amiram Eldar, May 10 2024

Extensions

More terms from Michel Marcus, Sep 19 2013
Previous Showing 31-40 of 60 results. Next