cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A334579 a(n) = Sum_{d|n} gcd(tau(d), sigma(d)).

Original entry on oeis.org

1, 2, 3, 3, 3, 8, 3, 4, 4, 6, 3, 11, 3, 8, 9, 5, 3, 12, 3, 13, 9, 8, 3, 16, 4, 6, 8, 11, 3, 24, 3, 8, 9, 6, 9, 16, 3, 8, 9, 16, 3, 26, 3, 15, 16, 8, 3, 19, 6, 10, 9, 9, 3, 24, 9, 20, 9, 6, 3, 45, 3, 8, 12, 9, 9, 26, 3, 13, 9, 24, 3, 24, 3, 6, 12, 11, 9, 24, 3
Offset: 1

Views

Author

Jaroslav Krizek, May 06 2020

Keywords

Comments

Inverse Möbius transform of A009205. - Antti Karttunen, May 19 2020

Examples

			a(6) = gcd(tau(1), sigma(1)) + gcd(tau(2), sigma(2)) + gcd(tau(3), sigma(3)) + gcd(tau(6), sigma(6)) = gcd(1, 1) + gcd(2, 3) + gcd(2, 4) + gcd(4, 12) = 1 + 1 + 2 + 4 = 8.
		

Crossrefs

Cf. A322979 (Sum_{d|n} gcd(d, tau(d))), A334490 (Sum_{d|n} gcd(d, sigma(d))).
Cf. A000005 (tau(n)), A000203 (sigma(n)), A009205 (gcd(tau(n), sigma(n))).
Cf. A334729 (with product, instead of sum).

Programs

  • Magma
    [&+[GCD(#Divisors(d), &+Divisors(d)): d in Divisors(n)]: n in [1..100]]
    
  • Mathematica
    a[n_] := DivisorSum[n, GCD[DivisorSigma[0, #], DivisorSigma[1, #]] &]; Array[a, 100] (* Amiram Eldar, May 07 2020 *)
  • PARI
    a(n) = sumdiv(n, d, gcd(numdiv(d), sigma(d))); \\ Michel Marcus, May 07 2020

Formula

a(p) = 3 for p = odd primes (A065091).

A334729 a(n) = Product_{d|n} gcd(tau(d), sigma(d)).

Original entry on oeis.org

1, 1, 2, 1, 2, 8, 2, 1, 2, 4, 2, 16, 2, 8, 16, 1, 2, 24, 2, 24, 16, 8, 2, 64, 2, 4, 8, 16, 2, 1024, 2, 3, 16, 4, 16, 48, 2, 8, 16, 48, 2, 2048, 2, 48, 96, 8, 2, 128, 6, 12, 16, 8, 2, 768, 16, 128, 16, 4, 2, 147456, 2, 8, 32, 3, 16, 2048, 2, 24, 16, 1024, 2
Offset: 1

Views

Author

Jaroslav Krizek, May 09 2020

Keywords

Examples

			a(6) = gcd(tau(1), sigma(1)) * gcd(tau(2), sigma(2)) * gcd(tau(3), sigma(3)) * gcd(tau(6), sigma(6)) = gcd(1, 1) * gcd(2, 3) * gcd(2, 4) * gcd(4, 12) = 1 * 1 * 2 * 4 = 8.
		

Crossrefs

Cf. A334491 (Product_{d|n} gcd(d, sigma(d))), A334579 (Sum_{d|n} gcd(tau(d), sigma(d))).
Cf. A000005 (tau(n)), A000203 (sigma(n)), A009205 (gcd(tau(n), sigma(n))).

Programs

  • Magma
    [&*[GCD(#Divisors(d), &+Divisors(d)): d in Divisors(n)]: n in [1..100]]
    
  • Maple
    g:= proc(d) option remember; igcd(numtheory:-tau(d), numtheory:-sigma(d)) end proc:
    f:= n -> mul(g(d), d = numtheory:-divisors(n)):
    map(f, [$1..100]); # Robert Israel, May 11 2020
  • Mathematica
    a[n_] := Product[GCD[DivisorSigma[0, d], DivisorSigma[1, d]], {d, Divisors[n]}]; Array[a, 100] (* Amiram Eldar, May 09 2020 *)
  • PARI
    a(n) = my(d=divisors(n)); prod(k=1, #d, gcd(numdiv(d[k]), sigma(d[k]))); \\ Michel Marcus, May 09-11 2020

Formula

a(p) = 2 for p = odd primes (A065091).

A296081 a(n) = gcd(tau(n)-1, sigma(n)-1), where tau = A000005 and sigma = A000203.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 5, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 7, 1, 7, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 5, 8, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 05 2017

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A032741(n), A039653(n)).
a(n) = gcd(A039653(n), A065608(n)).

A087801 Greatest common divisor of tau(n)+sigma(n) and tau(n)*sigma(n), where tau = A000005 and sigma = A000203.

Original entry on oeis.org

1, 1, 2, 1, 4, 16, 2, 1, 1, 2, 2, 2, 4, 4, 4, 1, 4, 9, 2, 12, 4, 8, 2, 4, 1, 2, 4, 2, 4, 16, 2, 3, 4, 2, 4, 1, 4, 16, 4, 2, 4, 8, 2, 18, 12, 4, 2, 2, 3, 9, 4, 4, 4, 64, 4, 64, 4, 2, 2, 36, 4, 4, 2, 1, 8, 8, 2, 12, 4, 8, 2, 9, 4, 2, 2, 2, 4, 16, 2, 4, 1, 2, 2, 4, 16, 8, 4, 4, 4, 6, 4, 6, 4, 4, 4, 24
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 11 2003

Keywords

Comments

a(n) = GCD(A007503(n), A064840(n)).

Crossrefs

Programs

  • Mathematica
    GCD[Total[#],Times@@#]&/@Table[{DivisorSigma[0,n],DivisorSigma[1,n]},{n,100}] (* Harvey P. Dale, Jul 17 2018 *)
  • PARI
    A087801(n) = gcd(sigma(n)+numdiv(n), sigma(n)*numdiv(n)); \\ Antti Karttunen, May 22 2017

A324554 a(n) = the smallest number m such that gcd(tau(m), sigma(m)) = n where tau(k) = the number of the divisors of k (A000005) and sigma(k) = the sum of the divisors of k (A000203).

Original entry on oeis.org

1, 3, 18, 6, 648, 20, 2916, 30, 288, 304, 82944, 60, 36864, 832, 16200, 168, 5509980288, 612, 31719424, 432, 23328, 44032, 247669456896, 420, 9487368, 258048, 14112, 2496, 31581162962944, 4176, 26843545600, 840, 4064256, 4390912, 42693156, 1980, 151801324109824
Offset: 1

Views

Author

Jaroslav Krizek, Mar 05 2019

Keywords

Comments

a(n) = the smallest number m such that A009205(m) = n.
a(p) = q^(c*p-1) * k for p prime, where q is some prime, c and k are positive integers. - David A. Corneth, Mar 07 2019

Examples

			For n=3; a(3) = 18 because gcd(tau(18), sigma(18)) = gcd (6, 39) = 3 and 18 is the smallest.
		

Crossrefs

Programs

  • Magma
    [Min([n: n in[1..10^5] | GCD(NumberOfDivisors(n), SumOfDivisors(n)) eq k]): k in [1..16]]
    
  • Mathematica
    Array[Block[{m = 1}, While[GCD @@ DivisorSigma[{0, 1}, m] != #, m++]; m] &, 16] (* Michael De Vlieger, Mar 24 2019 *)
  • PARI
    A324554search_and_print(searchlimit) = { my(m = Map(), k); for(n=1,searchlimit,k=gcd(sigma(n),numdiv(n)); if(!mapisdefined(m,k), mapput(m,k,n))); for(k=1, oo, if(!mapisdefined(m,k), break, print1(mapget(m,k), ", "))); }; \\ Antti Karttunen, Mar 06 2019

Extensions

a(17)-a(37) from Jon E. Schoenfield, Mar 06 2019
Previous Showing 11-15 of 15 results.