cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A082064 Greatest common prime-divisor of phi(n) and sigma(n) = A000203(n); a(n)=1 if no common prime-divisor exists.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 3, 2, 1, 2, 3, 2, 2, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 1, 2, 2, 3, 1, 2, 3, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 1, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 2, 1, 3, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 3, 2, 2, 1, 2, 2, 2, 2, 3, 2, 5, 2, 3, 2, 2, 2, 2, 3, 2, 2, 3, 3, 1, 2, 2, 2, 3, 3
Offset: 1

Views

Author

Labos Elemer, Apr 07 2003

Keywords

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]]; lf[x_] := Length[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; f1[x_] := EulerPhi[n]; f2[x_] := DivisorSigma[1, x]; Table[Max[Intersection[ba[f1[w]], ba[f2[w]]]], {w, 1, 128}]
    (* Second program: *)
    Array[If[CoprimeQ[#1, #2], 1, Max@ Apply[Intersection, Map[FactorInteger[#][[All, 1]] &, {#1, #2}]]] & @@ {EulerPhi@ #, DivisorSigma[1, #]} &, 105] (* Michael De Vlieger, Nov 03 2017 *)
  • PARI
    A006530(n) = if(1==n, n, vecmax(factor(n)[, 1]));
    A082064(n) = A006530(gcd(eulerphi(n), sigma(n))); \\ Antti Karttunen, Nov 03 2017

Formula

a(n) = A006530(A009223(n)). - Antti Karttunen, Nov 03 2017

Extensions

Changed "was found" to "exists" in definition. - N. J. A. Sloane, Jan 29 2022

A009213 a(n) = gcd(d(n), phi(n)), where d is the number of divisors of n (A000005) and phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 4, 3, 4, 2, 2, 2, 2, 4, 1, 2, 6, 2, 2, 4, 2, 2, 8, 1, 4, 2, 6, 2, 8, 2, 2, 4, 4, 4, 3, 2, 2, 4, 8, 2, 4, 2, 2, 6, 2, 2, 2, 3, 2, 4, 6, 2, 2, 4, 8, 4, 4, 2, 4, 2, 2, 6, 1, 4, 4, 2, 2, 4, 8, 2, 12, 2, 4, 2, 6, 4, 8, 2, 2, 1, 4, 2, 12, 4, 2, 4, 8, 2, 12, 4, 2, 4, 2, 4, 4, 2, 6, 6, 1, 2, 8, 2, 8, 8
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A323406 Greatest common divisor of Product (p_i^e_i)-1 and Product (p_i^e_i)+1, when n = Product (p_i^e_i): a(n) = gcd(A047994(n), A034448(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 6, 8, 1, 2, 2, 2, 6, 4, 2, 2, 2, 2, 6, 2, 2, 2, 8, 2, 1, 4, 2, 24, 2, 2, 6, 8, 2, 2, 12, 2, 30, 4, 2, 2, 2, 2, 6, 8, 2, 2, 2, 8, 6, 4, 2, 2, 24, 2, 6, 16, 1, 12, 4, 2, 6, 4, 24, 2, 2, 2, 6, 8, 2, 12, 24, 2, 6, 2, 2, 2, 4, 4, 6, 8, 2, 2, 4, 8, 6, 4, 2, 24, 2, 2, 6, 40, 2, 2, 8, 2, 42, 48
Offset: 1

Views

Author

Antti Karttunen, Jan 15 2019

Keywords

Crossrefs

Programs

  • PARI
    A047994(n) = { my(f=factor(n)~); prod(i=1, #f, f[1, i]^f[2, i]-1); };
    A034448(n) = { my(f=factor(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A323406(n) = gcd(A034448(n), A047994(n));

Formula

a(n) = gcd(A034448(n), A047994(n)), where A034448 is unitary sigma, and A047994 is unitary phi.

A081398 Numbers k for which the number of common prime factors of sigma(k) and phi(k) is exactly six (ignoring multiplicity).

Original entry on oeis.org

2003639, 2179316, 2180057, 2382974, 2689561, 2720567, 2761873, 2933675, 3145572, 3435381, 3925463, 4007278, 4137111, 4212692, 4360114, 4947971, 5172881, 5379122, 5441134, 5458673, 5523746, 5675816, 5748831, 5867350, 5957435, 6010917, 6537948, 6540171, 6561511
Offset: 1

Views

Author

Labos Elemer, Mar 28 2003

Keywords

Comments

Numbers k such that A081396(k) = 6. - Amiram Eldar, Mar 25 2024

Examples

			k = 400: sigma(400) = 6846840 = 2*2*2*3*3*5*7*11*13*19, phi(400) = 1755600 = 2*2*2*2*3*5*5*7*11*19, the common prime set = {2,3,5,7,11,19} with six primes.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]]; lf[x_] := Length[FactorInteger[x]]; ba[x_] := Table[ffi[x][[2*w - 1]], {w, 1, lf[x]}] ; Do[s = Length[Intersection[ba[EulerPhi[n]], ba[DivisorSigma[1, n]]]]; If[Greater[s, 5], Print[{n, s}]], {n, 1, 10000000}]
  • PARI
    is(n) = {my(f = factor(n)); omega(gcd(sigma(f), eulerphi(f))) == 6;} \\ Amiram Eldar, Mar 25 2024

Extensions

3925463 inserted and more terms added by Amiram Eldar, Mar 25 2024

A297170 a(n) = gcd(phi(n), sigma(n)-n).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 4, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 4, 2, 4, 1, 4, 1, 2, 1, 1, 5, 4, 1, 1, 1, 2, 1, 2, 1, 6, 1, 20, 3, 2, 1, 4, 2, 1, 1, 2, 1, 6, 1, 8, 1, 4, 1, 4, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 4, 1, 4, 1, 6, 1, 2, 2, 4, 1, 4, 1, 2, 1, 4, 1, 24, 3, 4, 5, 2, 1, 4, 1, 1, 3, 1, 1, 2, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Mar 03 2018

Keywords

Crossrefs

Programs

  • PARI
    A297170(n) = gcd(eulerphi(n),sigma(n)-n);

Formula

a(n) = gcd(A000010(n), A001065(n)).

A307640 Least number k such that n divides gcd(sigma(k), phi(k), tau(k)).

Original entry on oeis.org

1, 3, 18, 15, 3344, 45, 24128, 30, 882, 3344, 1012736, 126, 1953792, 24128, 16200, 168, 452263936, 2016, 1852571648, 3344, 40768, 1012736, 27007123456, 420, 1490000, 1953792, 103968, 24128, 2739920699392, 30096, 8348342681600, 840, 9114624, 452263936, 6163776, 2016
Offset: 1

Views

Author

Marius A. Burtea, Apr 19 2019

Keywords

Comments

For each n >= 1 there are infinitely many numbers s such that n divides sigma(s), phi(s) and tau(s).
From Dirichlet's theorem there are infinitely many numbers m for which the numbers p = n*m + 1 are prime. Then sigma(p^(n-1)), phi(p^(n-1)) and tau(p^(n-1)) numbers are divisible by n.

Examples

			For n = 2, sigma(3) = 4, phi(3) = 2, tau(3) = 4 are divisible by 2.
For n = 5, sigma(3344) = 7440, phi (3344) = 1440, tau (3344) = 20 are divisible by 5 and by 10.
For n = 11, sigma(1012736) = 2161632 = 11 * 196512, phi(1012736) = 11 * 43008, tau(1012736) = 11 * 4 are divisible by 11.
		

References

  • Laurențiu Panaitopol, Alexandru Gica, Arithmetic problems and number theory. Ideas and methods of solving, Ed. Gil, Zalău, 2006, ch. 13, p. 79, pr. 18. (in Romanian).

Crossrefs

Programs

  • Magma
    for m in [1..16] do
          for n in [1..2000000] do
                  if IsIntegral(SumOfDivisors(n)/m) and IsIntegral(EulerPhi(n)/m) and IsIntegral(NumberOfDivisors(n)/m) then
                 m,n;
                 break;
                end if;
          end for;
    end for;
    
  • Mathematica
    Array[Block[{i = 1}, While[Mod[GCD[DivisorSigma[1, i], EulerPhi@ i,DivisorSigma[0, i]], #] != 0, i++]; i] &, 16] (*Adaptation after A222713*)
  • PARI
    isok(n,k) = ! frac(gcd(sigma(k), gcd(eulerphi(k), numdiv(k)))/n);
    a(n) = my(k=1); while(!isok(n,k), k++); k; \\ Michel Marcus, Apr 20 2019
    
  • PARI
    a(n) = {if(n==1,return(1)); my(res = oo, f = factor(n), hpf = f[#f~, 1]); forprime(p = 2, oo, if(p ^ (hpf - 1) > res, return(res)); forstep(i = p ^ (hpf - 1), res, p ^ (hpf - 1), if(isok(n, i), res = min(res, i);  next(2) ) ) ) } \\ uses isok from above \\ David A. Corneth, Apr 22 2019

Extensions

More terms from David A. Corneth, Apr 21 2019
Previous Showing 21-26 of 26 results.