A156584
Triangle T(n,k) = SF(n+1)/(SF(n-k+1)*SF(k+1)) where SF(n) is the superfactorial A000178(n), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 12, 12, 1, 1, 60, 240, 60, 1, 1, 360, 7200, 7200, 360, 1, 1, 2520, 302400, 1512000, 302400, 2520, 1, 1, 20160, 16934400, 508032000, 508032000, 16934400, 20160, 1, 1, 181440, 1219276800, 256048128000, 1536288768000, 256048128000, 1219276800, 181440, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 12, 12, 1;
1, 60, 240, 60, 1;
1, 360, 7200, 7200, 360, 1;
1, 2520, 302400, 1512000, 302400, 2520, 1;
1, 20160, 16934400, 508032000, 508032000, 16934400, 20160, 1;
-
SF := n -> mul(j!, j=0..n): T := (n,k) -> SF(n-1)/(SF(n-k)*SF(k)):
seq(print(seq(T(n,k),k=1..n-1)),n=0..9); # Peter Luschny, Jan 24 2015
-
(* First program *)
b[n_, k_]:= If[k==0, n!, Product[Sum[(-1)^(i+j)*(j+1)*StirlingS1[j-1, i]*(k+1)^i, {i, 0, j-1}], {j, 1, n}]];
T[n_, k_, m_] = If[n==0, 1, b[n, m]/(b[k, m]*b[n-k, m])];
Table[T[n, k, 1], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 20 2021 *)
(* Second program *)
f[n_, k_]:= If[k==0, n!, (-1)^n*(n+1)!*BarnesG[n+k+1]/(Gamma[k+1]^n*BarnesG[k+1])];
T[n_, k_, m_]:= If[n==0, 1, f[n,m]/(f[k,m]*f[n-k,m])];
Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 20 2021 *)
-
def f(n,k): return factorial(n) if (k==0) else (-1)^n*factorial(n+1)*product( rising_factorial(k+1, j) for j in (0..n-1) )
def T(n,k,m): return 1 if (n==0) else f(n,m)/(f(k,m)*f(n-k,m))
flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 21 2021
A193521
G.f.: A(x) = ( Sum_{n>=0} x^n/sf(n) )^3 where A(x) = Sum_{n>=0} a(n)*x^n/sf(n), and sf(n) = Product_{k=0..n} k! is the superfactorial of n (A000178).
Original entry on oeis.org
1, 3, 9, 51, 795, 43923, 10372323, 11996843043, 75315947454723, 2788806652875290883, 654625444656522114316803, 1045012738906587147509753740803, 12046169853230117709495421609499289603, 1053916215003128938522329980606467994425804803
Offset: 0
Let F(x) = 1 + x + x^2/(1!*2!) + x^3/(1!*2!*3!) + x^4/(1!*2!*3!*4!) + ... + x^n/sf(n) + ...
then F(x)^3 = 1 + 3*x + 9*x^2/(1!*2!) + 51*x^3/(1!*2!*3!) + 795*x^4/(1!*2!*3!*4!) + 43923*x^5/(1!*2!*3!*4!*5!) + ... + a(n)*x^n/sf(n) + ...
-
A193521:= func< n | (&+[ A009963(n,k)*A193520(k): k in [0..n]]) >;
[A193521(n): n in [0..20]]; // G. C. Greubel, Jan 05 2022
-
a[n_]:= a[n]= Sum[BarnesG[n+2]/(BarnesG[j+2]*BarnesG[k-j+2]*BarnesG[n-k+2]), {k,0,n}, {j,0,k}];
Table[a[n], {n, 0, 20}] (* G. C. Greubel, Jan 05 2022 *)
-
{a(n) = prod(k=1,n,k!)*polcoeff((sum(m=0, n+1, x^m/prod(k=0, m, k!) + x*O(x^n))^3), n)}
-
@CachedFunction
def A009963(n,k): return product(factorial(n-j+1)/factorial(j) for j in (1..k))
def A193521(n): return sum(sum(A009963(n,k)*A009963(k,j) for j in (0..k)) for k in (0..n))
[A193521(n) for n in (0..20)] # G. C. Greubel, Jan 05 2022
A156586
A new q-combination type general triangle sequence based on Stirling first polynomials: here q=4: m=3: t(n,k)=If[m == 0, n!, Product[Sum[(-1)^(i + k)*StirlingS1[k - 1, i]*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]]; b(n,k,m)=If[n == 0, 1, t[n, m]/(t[k, m]*t[n - k, m])].
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 20, 20, 1, 1, 120, 600, 120, 1, 1, 840, 25200, 25200, 840, 1, 1, 6720, 1411200, 8467200, 1411200, 6720, 1, 1, 60480, 101606400, 4267468800, 4267468800, 101606400, 60480, 1, 1, 604800, 9144576000, 3072577536000, 21508042752000
Offset: 0
{1},
{1, 1},
{1, 4, 1},
{1, 20, 20, 1},
{1, 120, 600, 120, 1},
{1, 840, 25200, 25200, 840, 1},
{1, 6720, 1411200, 8467200, 1411200, 6720, 1},
{1, 60480, 101606400, 4267468800, 4267468800, 101606400, 60480, 1},
{1, 604800, 9144576000, 3072577536000, 21508042752000, 3072577536000, 9144576000, 604800, 1},
{1, 6652800, 1005903360000, 3041851760640000, 170343698595840000, 170343698595840000, 3041851760640000, 1005903360000, 6652800, 1},
{1, 79833600, 132779243520000, 4015244324044800000, 2023683139318579200000, 16189465114548633600000, 2023683139318579200000, 4015244324044800000, 132779243520000, 79833600, 1}
-
Clear[t, n, m, i, k, a, b];
t[n_, m_] = If[m == 0, n!, Product[Sum[(-1)^(i + k)*StirlingS1[k - 1, i]*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]];
b[n_, k_, m_] = If[n == 0, 1, t[n, m]/(t[k, m]*t[n - k, m])];
Table[Flatten[Table[Table[b[n, k, m], {k, 0, n}], {n, 0, 10}]], {m, 0, 15}]
A156587
A new q-combination type general triangle sequence based on Stirling first polynomials: here q=5: m=4: t(n,k)=If[m == 0, n!, Product[Sum[(-1)^(i + k)*StirlingS1[k - 1, i]*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]]; b(n,k,m)=If[n == 0, 1, t[n, m]/(t[k, m]*t[n - k, m])].
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 30, 30, 1, 1, 210, 1260, 210, 1, 1, 1680, 70560, 70560, 1680, 1, 1, 15120, 5080320, 35562240, 5080320, 15120, 1, 1, 151200, 457228800, 25604812800, 25604812800, 457228800, 151200, 1, 1, 1663200, 50295168000, 25348764672000
Offset: 0
{1},
{1, 1},
{1, 5, 1},
{1, 30, 30, 1},
{1, 210, 1260, 210, 1},
{1, 1680, 70560, 70560, 1680, 1},
{1, 15120, 5080320, 35562240, 5080320, 15120, 1},
{1, 151200, 457228800, 25604812800, 25604812800, 457228800, 151200, 1},
{1, 1663200, 50295168000, 25348764672000, 202790117376000, 25348764672000, 50295168000, 1663200, 1},
{1, 19958400, 6638962176000, 33460369367040000, 2409146594426880000, 2409146594426880000, 33460369367040000, 6638962176000, 19958400, 1},
{1, 259459200, 1035678099456000, 57417993833840640000, 41340955560365260800000, 372068600043287347200000, 41340955560365260800000, 57417993833840640000, 1035678099456000, 259459200, 1}
-
Clear[t, n, m, i, k, a, b];
t[n_, m_] = If[m == 0, n!, Product[Sum[(-1)^(i + k)*StirlingS1[k - 1, i]*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]];
b[n_, k_, m_] = If[n == 0, 1, t[n, m]/(t[k, m]*t[n - k, m])];
Table[Flatten[Table[Table[b[n, k, m], {k, 0, n}], {n, 0, 10}]], {m, 0, 15}]
A156588
A triangle of q factorial type based on Stirling first polynomials: t(n,k)=If[m == 0, n!, Product[Sum[(-1)^(i + k)*StirlingS1[k - 1, i]*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]].
Original entry on oeis.org
1, 1, 1, 1, -1, 2, 1, -1, 2, 6, 1, -1, 3, -12, 24, 1, -1, 4, -36, 288, 120, 1, -1, 5, -80, 2160, -34560, 720, 1, -1, 6, -150, 9600, -777600, 24883200, 5040, 1, -1, 7, -252, 31500, -8064000, 1959552000, -125411328000, 40320, 1, -1, 8, -392, 84672, -52920000
Offset: 0
{1},
{1, 1},
{1, -1, 2},
{1, -1, 2, 6},
{1, -1, 3, -12, 24},
{1, -1, 4, -36, 288, 120},
{1, -1, 5, -80, 2160, -34560, 720},
{1, -1, 6, -150, 9600, -777600, 24883200, 5040},
{1, -1, 7, -252, 31500, -8064000, 1959552000, -125411328000, 40320},
{1, -1, 8, -392, 84672, -52920000, 54190080000, -39504568320000, 5056584744960000, 362880},
{1, -1, 9, -576, 197568, -256048128, 800150400000, -3277416038400000, 7167708875980800000, -1834933472251084800000, 3628800}
-
Clear[t, n, m, i, k, a, b];
t[n_, m_] = If[m == 0, n!, Product[Sum[(-1)^(i + k)*StirlingS1[k - 1, i]*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]];
a = Table[Table[t[n, m], {n, 0, 10}], {m, 0, 10}];
b = Table[Table[a[[m, n - m + 1]], {m, n, 1, -1}], {n, 1, Length[a]}];
Flatten[%]
A335997
Triangle read by rows: T(n,k) = Product_{i=n-k+1..n} i! for 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 6, 12, 12, 1, 24, 144, 288, 288, 1, 120, 2880, 17280, 34560, 34560, 1, 720, 86400, 2073600, 12441600, 24883200, 24883200, 1, 5040, 3628800, 435456000, 10450944000, 62705664000, 125411328000, 125411328000
Offset: 0
The triangle starts:
n\k : 0 1 2 3 4 5 6
============================================================
0 : 1
1 : 1 1
2 : 1 2 2
3 : 1 6 12 12
4 : 1 24 144 288 288
5 : 1 120 2880 17280 34560 34560
6 : 1 720 86400 2073600 12441600 24883200 24883200
etc.
-
T[n_, k_] := Product[i!, {i, n - k + 1, n}]; Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Amiram Eldar, Jul 08 2020 *)
Comments