cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 39 results. Next

A367706 Number of degree 5 vertices in the n-Menger sponge graph.

Original entry on oeis.org

0, 24, 1272, 27192, 537720, 10638648, 211640184, 4223114808, 84382898808, 1687017131832, 33735198879096, 674662776506424, 13492925768472696, 269855876817045816, 5397096426544159608, 107941759648376656440, 2158833841895083390584, 43176666029284877542200, 863533234116651651590520
Offset: 1

Views

Author

Allan Bickle, Nov 27 2023

Keywords

Comments

The level 0 Menger sponge graph is a single vertex. The level n Menger sponge graph is formed from 20 copies of level n-1 in the shape of a cube with middle faces removed by joining boundary vertices between adjacent copies.

Examples

			The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices.  Thus a(1) = 0.
		

Crossrefs

Cf. A009964 (number of vertices), A291066 (number of edges).
Cf. A359452, A359453 (numbers of corner and non-corner vertices).
Cf. A291066, A083233, A332705 (surface area).
Cf. A367700, A367701, A367702, A367706, A367707 (degrees 2 through 6).
Cf. A001018, A271939, A365606, A365607, A365608 (Sierpinski carpet graphs).

Programs

  • Mathematica
    LinearRecurrence[{32,-275,724,-480},{0,24,1272,27192},25] (* Paolo Xausa, Nov 29 2023 *)
  • Python
    def A367706(n): return ((7*5**n<<(n<<1)+1)+(17<<(3*n+1))-(3**(n+3)<<5))//85+24 # Chai Wah Wu, Nov 28 2023

Formula

a(n) = (14/85)*20^n + (2/5)*8^n - (864/85)*3^n + 24.
a(n) = 20*a(n-1) - (3/5)*8^n + (288/5)*3^n - 456.
a(n) = 20^n - A367700(n) - A367701(n) - A367702(n) - A367707(n).
5*a(n) = 2*A291066(n) - 2*A367700(n) - 3*A367701(n) - 4*A365602(n) - 6*A367707(n).
G.f.: 24*x^2*(1 + 21*x - 288*x^2)/((1 - x)*(1- 3*x)*(1 - 8*x)*(1 - 20*x)). - Stefano Spezia, Nov 28 2023

A367707 Number of degree 6 vertices in the n-Menger sponge graph.

Original entry on oeis.org

0, 8, 456, 14312, 338376, 7218536, 148082760, 2991665384, 60074332872, 1203417692264, 24083810625864, 481799892270056, 9636987359949768, 192747663544965992, 3855016602355831368, 77100838700834961128, 1542020827252644619464, 30840448970959051746920, 616809238826486098348872
Offset: 1

Views

Author

Allan Bickle, Nov 27 2023

Keywords

Comments

The level 0 Menger sponge graph is a single vertex. The level n Menger sponge graph is formed from 20 copies of level n-1 in the shape of a cube with middle faces removed by joining boundary vertices between adjacent copies.

Examples

			The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices.  Thus a(1) = 0.
		

Crossrefs

Cf. A009964 (number of vertices), A291066 (number of edges).
Cf. A359452, A359453 (numbers of corner and non-corner vertices).
Cf. A291066, A083233, A332705 (surface area).
Cf. A367700, A367701, A367702, A367706, A367707 (degrees 2 through 6).
Cf. A001018, A271939, A365606, A365607, A365608 (Sierpinski carpet graphs).

Programs

  • Mathematica
    LinearRecurrence[{32,-275,724,-480},{0,8,456,14312},25] (* Paolo Xausa, Nov 29 2023 *)
  • Python
    def A367707(n): return ((5**(n+1)<<(n<<1)+1)-(51<<(3*n+1))+(3**(n+3)<<4))//85-8 # Chai Wah Wu, Nov 28 2023

Formula

a(n) = (2/17)*20^n - (6/5)*8^n + (432/85)*3^n - 8.
a(n) = 20*a(n-1) + (9/5)*8^n - (144/5)*3^n + 152.
a(n) = 20^n - A367700(n) - A367701(n) - A367702(n) - A367706(n).
6*a(n) = 2*A291066(n) - 2*A367700(n) - 3*A367701(n) - 4*A365602(n) - 5*A367706(n).
G.f.: 8*x^2*(1 + 25*x + 240*x^2)/((1 - x)*(1 - 3*x)*(1 - 8*x)*(1 - 20*x)). - Stefano Spezia, Nov 28 2023

A009984 Powers of 40.

Original entry on oeis.org

1, 40, 1600, 64000, 2560000, 102400000, 4096000000, 163840000000, 6553600000000, 262144000000000, 10485760000000000, 419430400000000000, 16777216000000000000, 671088640000000000000, 26843545600000000000000, 1073741824000000000000000, 42949672960000000000000000
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

Same as Pisot sequences E(1, 40), L(1, 40), P(1, 40), T(1, 40). Essentially same as Pisot sequences E(40, 1600), L(40, 1600), P(40, 1600), T(40, 1600). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 40-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011

Crossrefs

Programs

Formula

G.f.: 1/(1 - 40*x). - Philippe Deléham, Nov 24 2008
a(n) = 40^n; a(n) = 40*a(n-1), a(0) = 1. - Vincenzo Librandi, Nov 21 2010
From Elmo R. Oliveira, Jul 10 2025: (Start)
E.g.f.: exp(40*x).
a(n) = A000079(n)*A009964(n) = A259076(n)/A000079(n). (End)

A013725 a(n) = 20^(2*n + 1).

Original entry on oeis.org

20, 8000, 3200000, 1280000000, 512000000000, 204800000000000, 81920000000000000, 32768000000000000000, 13107200000000000000000, 5242880000000000000000000, 2097152000000000000000000000, 838860800000000000000000000000, 335544320000000000000000000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Bisection of A009964 (20^n).

Programs

Formula

From Philippe Deléham, Nov 28 2008: (Start)
a(n) = 400*a(n-1); a(0)=20.
G.f.: 20/(1-400*x). (End)
From Elmo R. Oliveira, Jul 10 2025: (Start)
E.g.f.: 20*exp(400*x).
a(n) = A004171(n)*A013715(n) = A009964(A005408(n)). (End)

A063012 Sum of distinct powers of 20; i.e., numbers with digits in {0,1} base 20; i.e., write n in base 2 and read as if written in base 20.

Original entry on oeis.org

0, 1, 20, 21, 400, 401, 420, 421, 8000, 8001, 8020, 8021, 8400, 8401, 8420, 8421, 160000, 160001, 160020, 160021, 160400, 160401, 160420, 160421, 168000, 168001, 168020, 168021, 168400, 168401, 168420, 168421, 3200000, 3200001, 3200020, 3200021, 3200400, 3200401
Offset: 0

Views

Author

Henry Bottomley, Jul 04 2001

Keywords

Examples

			a(5) = 401 since 5 written in base 2 is 101 so a(5) = 1*20^2 + 0*20^1 + 1*20^0 = 400 + 0 + 1 = 401.
		

Crossrefs

A063013 is similar in a different way.

Programs

  • Maple
    a:= proc(n) `if`(n<2, n, irem(n, 2, 'r')+20*a(r)) end:
    seq(a(n), n=0..37);  # Alois P. Heinz, Apr 04 2025
  • Mathematica
    Table[FromDigits[IntegerDigits[n,2],20],{n,0,40}] (* Harvey P. Dale, Jul 21 2014 *)
  • PARI
    baseE(x, b)= { local(d, e, f); e=0; f=1; while (x>0, d=x-b*(x\b); x\=b; e+=d*f; f*=10); return(e) }
    baseI(x, b)= { local(d, e, f); e=0; f=1; while (x>0, d=x-10*(x\10); x\=10; e+=d*f; f*=b); return(e) }
    { for (n=0, 1000, write("b063012.txt", n, " ", baseI(baseE(n, 2), 20)) ) } \\ Harry J. Smith, Aug 15 2009
    
  • Python
    def A063012(n): return int(bin(n)[2:],20) # Chai Wah Wu, Apr 04 2025

Formula

a(n) = a(n-2^floor(log_2(n))) + 20^floor(log_2(n)). a(2n) = 20*a(n); a(2n+1) = a(2n)+1 = 20*a(n)+1.
a(n) = Sum_{k>=0} A030308(n,k)*A009964(k). - Philippe Deléham, Oct 15 2011
G.f.: (1/(1 - x))*Sum_{k>=0} 20^k*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jun 04 2017

Extensions

Edited by Charles R Greathouse IV, Aug 02 2010

A180725 Smallest power of 20 that begins with n.

Original entry on oeis.org

1, 20, 3200000, 400, 512000000000, 64000000, 703687441776640000000000000000000000000000000000000000000000, 8000, 900719925474099200000000000000000000000000000000000000000000000000000
Offset: 1

Views

Author

Daniel Mondot, Sep 18 2010

Keywords

Crossrefs

A013894 a(n) = 20^(5*n + 1).

Original entry on oeis.org

20, 64000000, 204800000000000, 655360000000000000000, 2097152000000000000000000000, 6710886400000000000000000000000000, 21474836480000000000000000000000000000000, 68719476736000000000000000000000000000000000000, 219902325555200000000000000000000000000000000000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A009964.

Programs

  • Magma
    [20^(5*n+1): n in [0..10]]; // Vincenzo Librandi, May 27 2011
  • Mathematica
    NestList[3200000*# &, 20, 10] (* Paolo Xausa, Jul 13 2025 *)

Formula

a(n) = 3200000*a(n-1), a(0)=20. - Vincenzo Librandi, May 27 2011
From Elmo R. Oliveira, Jul 11 2025: (Start)
G.f.: 20/(1-3200000*x).
E.g.f.: 20*exp(3200000*x).
a(n) = A013822(n)*A013854(n) = A009964(A016861(n)). (End)

A013896 a(n) = 20^(5*n + 3).

Original entry on oeis.org

8000, 25600000000, 81920000000000000, 262144000000000000000000, 838860800000000000000000000000, 2684354560000000000000000000000000000, 8589934592000000000000000000000000000000000, 27487790694400000000000000000000000000000000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A009964.

Programs

  • Magma
    [20^(5*n+3): n in [0..10]]; // Vincenzo Librandi, May 27 2011
  • Mathematica
    20^(5Range[0,20]+3) (* or *) NestList[3200000#&,8000,20] (* Harvey P. Dale, Dec 05 2021 *)

Formula

a(n) = 3200000*a(n-1), a(0)=8000. - Vincenzo Librandi, May 27 2011
From Elmo R. Oliveira, Jul 11 2025: (Start)
G.f.: 8000/(1-3200000*x).
E.g.f.: 8000*exp(3200000*x).
a(n) = A013824(n)*A013856(n) = A009964(A016885(n)). (End)

A013766 a(n) = 20^(3*n + 1).

Original entry on oeis.org

20, 160000, 1280000000, 10240000000000, 81920000000000000, 655360000000000000000, 5242880000000000000000000, 41943040000000000000000000000, 335544320000000000000000000000000, 2684354560000000000000000000000000000, 21474836480000000000000000000000000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A009964.

Programs

Formula

From Elmo R. Oliveira, Feb 27 2025: (Start)
G.f.: 20/(1 - 8000*x).
E.g.f.: 20*exp(8000*x).
a(n) = A013730(n)*A013746(n) = A009964(A016777(n)). (End)

A013767 a(n) = 20^(3*n + 2).

Original entry on oeis.org

400, 3200000, 25600000000, 204800000000000, 1638400000000000000, 13107200000000000000000, 104857600000000000000000000, 838860800000000000000000000000, 6710886400000000000000000000000000, 53687091200000000000000000000000000000, 429496729600000000000000000000000000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A009964.

Programs

Formula

From Elmo R. Oliveira, Feb 27 2025: (Start)
G.f.: 400/(1 - 8000*x).
E.g.f.: 400*exp(8000*x).
a(n) = A013731(n)*A013747(n) = A009964(A016789(n)). (End)
Previous Showing 21-30 of 39 results. Next