cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 44 results. Next

A160317 Numerator of Hermite(n, 19/31).

Original entry on oeis.org

1, 38, -478, -164236, -3484820, 1130223208, 76437602104, -10129105154704, -1413297494585968, 102039816064461920, 28324733071797627424, -884865408030648260288, -632466392109110072889152, -3625187129327311294505344, 15665048162323786452017148800
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 38/31, -478/961, -164236/29791, -3484820/923521, ...
		

Crossrefs

Cf. A009975 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(38/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Oct 04 2018
  • Mathematica
    Numerator[HermiteH[Range[0,20],19/31]] (* Harvey P. Dale, Dec 26 2017 *)
    Table[31^n*HermiteH[n, 19/31], {n, 0, 30}] (* G. C. Greubel, Oct 04 2018 *)
  • PARI
    a(n)=numerator(polhermite(n, 19/31)) \\ Charles R Greathouse IV, Jan 29 2016
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(38*x - 961*x^2))) \\ G. C. Greubel, Oct 04 2018
    

Formula

From G. C. Greubel, Oct 04 2018: (Start)
a(n) = 31^n * Hermite(n, 19/31).
a(n+2) = 38*a(n+1) - 1922*(n+1)*a(n)
E.g.f.: exp(38*x - 961*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(38/31)^(n-2*k)/(k!*(n-2*k)!)). (End)

A160328 Numerator of Hermite(n, 20/31).

Original entry on oeis.org

1, 40, -322, -166640, -4808948, 1088770400, 89764806280, -8965108001600, -1566300023755120, 75195499682396800, 30101677798211937760, -241190391967188985600, -646057287688484347545920, -20279476307208127137958400, 15331208337896144822264021120
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 40/31, -322/961, -166640/29791, -4808948/923521, ...
		

Crossrefs

Cf. A009975 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(40/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Oct 04 2018
  • Mathematica
    Table[31^n*HermiteH[n, 20/31], {n, 0, 30}] (* G. C. Greubel, Oct 04 2018 *)
  • PARI
    a(n)=numerator(polhermite(n, 20/31)) \\ Charles R Greathouse IV, Jan 29 2016
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(40*x - 961*x^2))) \\ G. C. Greubel, Oct 04 2018
    

Formula

From G. C. Greubel, Oct 04 2018: (Start)
a(n) = 31^n * Hermite(n, 20/31).
a(n+2) = 40*a(n+1) - 1922*(n+1)*a(n)
E.g.f.: exp(40*x - 961*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(40/31)^(n-2*k)/(k!*(n-2*k)!)). (End)

A160334 Numerator of Hermite(n, 23/31).

Original entry on oeis.org

1, 46, 194, -167900, -8842004, 884083016, 125639477176, -4415829390416, -1893481677885040, -19202364475675424, 31870137298174352416, 1835095760938501860416, -589384037754831073199936, -69436314367007836275831680, 11532279106459848726285343616
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 46/31, 194/961, -167900/29791, -8842004/923521, ...
		

Crossrefs

Cf. A009975 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(46/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 12 2018
  • Mathematica
    Numerator[HermiteH[Range[0,20],23/31]] (* Harvey P. Dale, Aug 10 2014 *)
    Table[31^n*HermiteH[n, 23/31], {n,0,30}] (* G. C. Greubel, Jul 12 2018 *)
  • PARI
    a(n)=numerator(polhermite(n,23/31)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

From G. C. Greubel, Jul 12 2018: (Start)
a(n) = 31^n * Hermite(n, 23/31).
E.g.f.: exp(46*x - 961*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(46/31)^(n-2*k)/(k!*(n-2*k)!)). (End)

A160344 Numerator of Hermite(n, 26/31).

Original entry on oeis.org

1, 52, 782, -159224, -12788660, 559103792, 151972419784, 1454980899424, -1968977929003888, -124758638617745600, 27571931007786483424, 3831601446637967570048, -383682490141447518907712, -108323545252613355018788096, 3953866345538313246451111040
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 52/31, 782/961, -159224/29791, -12788660/923521, ...
		

Crossrefs

Cf. A009975 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(52/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 12 2018
  • Mathematica
    Numerator[HermiteH[Range[0,20],26/31]] (* Harvey P. Dale, Jan 26 2016 *)
    Table[31^n*HermiteH[n, 26/31], {n,0,30}] (* G. C. Greubel, Jul 12 2018 *)
  • PARI
    a(n)=numerator(polhermite(n,26/31)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

From G. C. Greubel, Jul 12 2018: (Start)
a(n) = 31^n * Hermite(n, 26/31).
E.g.f.: exp(52*x - 961*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(52/31)^(n-2*k)/(k!*(n-2*k)!)). (End)

A165852 Totally multiplicative sequence with a(p) = 31.

Original entry on oeis.org

1, 31, 31, 961, 31, 961, 31, 29791, 961, 961, 31, 29791, 31, 961, 961, 923521, 31, 29791, 31, 29791, 961, 961, 31, 923521, 961, 961, 29791, 29791, 31, 29791, 31, 28629151, 961, 961, 961, 923521, 31, 961, 961, 923521, 31, 29791, 31, 29791, 29791
Offset: 1

Views

Author

Jaroslav Krizek, Sep 28 2009

Keywords

Crossrefs

Programs

  • Magma
    [n eq 1 select 1 else 31^(&+[p[2]: p in Factorization(n)]): n in [1..100]]; // Vincenzo Librandi, Apr 14 2016
  • Mathematica
    31^PrimeOmega[Range[100]] (* G. C. Greubel, Apr 13 2016 *)
  • PARI
    a(n) = 31^bigomega(n); \\ Michel Marcus, Apr 14 2016
    

Formula

a(n) = A009975(A001222(n)) = 31^bigomega(n) = 31^A001222(n).

A359059 Numbers k such that phi(k) + rad(k) + psi(k) is a multiple of 3.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 23, 27, 29, 31, 32, 36, 37, 41, 42, 43, 44, 45, 47, 49, 50, 53, 54, 59, 61, 63, 67, 68, 71, 72, 73, 78, 79, 80, 81, 83, 84, 89, 90, 92, 97, 99, 101, 103, 105, 107, 108, 109, 110, 113, 114, 116, 117, 125, 126, 127, 128, 131, 135, 137, 139
Offset: 1

Views

Author

Torlach Rush, Dec 14 2022

Keywords

Comments

When k is prime (denote as p), phi(p) = p - 1, rad(p) = p, and psi(p) = p + 1, so phi(p) + rad(p) + psi(p) = 3*p. Therefore, A000040 is a subsequence.
When k = p^m (m>=1) with p prime, phi(p^m) = (p-1)*p^(m-1), rad(p^m) = p, and psi(p^m) = (p+1)*p^(m-1), so phi(p^m) + rad(p^m) + psi(p^m) = 2*p^m + p = p * (1+2*p^(m-1)). Then, this expression is a multiple of 3 iff p == 0 or 1 (mod 3), equivalently iff p is a generalized cuban prime of A007645. Therefore, as 1 is also a term, every sequence {p^m, p in A007645, m>=0} is a subsequence. See crossrefs section. - Bernard Schott, Jan 25 2023 after an observation of Alois P. Heinz

Examples

			8 is a term because 4+2+12 is divisible by 3.
		

Crossrefs

Cf. A000010 (phi), A000040, A001615 (psi), A007645, A007947 (rad), A001748 (3*p), A000244.
Subsequences of the form {p^n, n>=0}: A000244 (p=3), A000420 (p=7), A001022 (p=13), A001029 (p=19), A009975 (p=31), A009981 (p=37), A009987 (p=43).

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Divisible[Times @@ ((p - 1)*p^(e - 1)) + Times @@ p + Times @@ ((p + 1)*p^(e - 1)), 3]]; Select[Range[170], q] (* Amiram Eldar, Dec 15 2022 *)
  • PARI
    isok(m) = ((eulerphi(m) + factorback(factorint(m)[, 1]) + m*sumdiv(m, d, moebius(d)^2/d)) % 3) == 0; \\ Michel Marcus, Dec 27 2022
  • Python
    from sympy.ntheory.factor_ import totient
    from sympy import primefactors, prod
    def rad(n): return 1 if n < 2 else prod(primefactors(n))
    def psi(n):
        plist = primefactors(n)
        return n*prod(p+1 for p in plist)//prod(plist)
    # Output display terms.
    for n in range(1,170):
        if(0 == (totient(n) + rad(n) + psi(n)) % 3):
            print(n, end = ", ")
    

A160329 Numerator of Hermite(n, 21/31).

Original entry on oeis.org

1, 42, -158, -168084, -6148500, 1033992792, 102514782264, -7618384022256, -1699206009514608, 45773620326594720, 31315357606300667424, 435476036787477513408, -643779296967334655115072, -37082549785094436884075136, 14528002423051857343574033280
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 42/31, -158/961, -168084/29791, -6148500/923521,...
		

Crossrefs

Cf. A009975 (denominators).

Programs

A160330 Numerator of Hermite(n, 22/31).

Original entry on oeis.org

1, 44, 14, -168520, -7495604, 965775184, 114526862536, -6098137470304, -1809162457252720, 14161813624274624, 31918011985025634016, 1132202469482569623424, -624993700730178890935616, -53612840588273856995818240, 13257127620560200061101298816
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 44/31, 14/961, -168520/29791, -7495604/923521,...
		

Crossrefs

Cf. A009975 (denominators).

Programs

A160335 Numerator of Hermite(n, 24/31).

Original entry on oeis.org

1, 48, 382, -166176, -10179060, 788966208, 135691144584, -2585183370624, -1949677461023088, -53834738622393600, 31141453266902483424, 2529493433133724196352, -536976920178433543125312, -84115128710361024934677504, 9379379149481011311664525440
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 48/31, 382/961, -166176/29791, -10179060/923521,...
		

Crossrefs

Cf. A009975 (denominators).

Programs

A160336 Numerator of Hermite(n, 25/31).

Original entry on oeis.org

1, 50, 578, -163300, -11497748, 680563000, 144521508280, -622177102000, -1975501227499120, -89208466254604000, 29711796920549577760, 3200176567440967768000, -468157982122210784601920, -97216771457569019831248000, 6836556768427107672501173120
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 50/31, 578/961, -163300/29791, -11497748/923521,...
		

Crossrefs

Cf. A009975 (denominators).

Programs

Previous Showing 31-40 of 44 results. Next