cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A119260 Numbers with even decimal digits in increasing order.

Original entry on oeis.org

0, 2, 4, 6, 8, 24, 26, 28, 46, 48, 68, 246, 248, 268, 468, 2468
Offset: 1

Views

Author

Zak Seidov, May 11 2006

Keywords

Comments

This is the complete list of all 16 such numbers. Cf. A119261 Even decimal digits in decreasing order, A119253 Odd digits in increasing order, A119252 Odd digits in decreasing order, A009993 Digits in increasing order, A009995 Digits in decreasing order.

Crossrefs

Programs

  • Mathematica
    Flatten@Table[FromDigits/@Subsets[Range[2,8,2],{n}],{n,0,5}]

A119261 Numbers with even decimal digits in decreasing order.

Original entry on oeis.org

0, 2, 4, 6, 8, 20, 40, 42, 60, 62, 64, 80, 82, 84, 86, 420, 620, 640, 642, 820, 840, 842, 860, 862, 864, 6420, 8420, 8620, 8640, 8642, 86420
Offset: 1

Views

Author

Zak Seidov, May 11 2006

Keywords

Comments

This is the complete list of all 31 such numbers. Cf. A119260 Even decimal digits in increasing order, A119253 Odd digits in increasing order, A119252 Odd digits in decreasing order, A009993 Digits in increasing order, A009995 Digits in decreasing order.

Crossrefs

Programs

  • Mathematica
    Sort@Flatten@Table[FromDigits/@Subsets[Range[8,0,-2],{n}],{n,5}]

A212372 Nonprime numbers with distinct digits in descending order.

Original entry on oeis.org

1, 4, 6, 8, 9, 10, 20, 21, 30, 32, 40, 42, 50, 51, 52, 54, 60, 62, 63, 64, 65, 70, 72, 74, 75, 76, 80, 81, 82, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 96, 98, 210, 310, 320, 321, 410, 420, 430, 432, 510, 520, 530, 531, 532, 540, 542, 543, 610, 620, 621, 630
Offset: 1

Views

Author

Jaroslav Krizek, May 10 2012

Keywords

Comments

Sequence is finite with 935 terms, last term is a(935) = 9876543210.
Complement of A052014 with respect to A009995.

Crossrefs

Cf. A052014 (primes with distinct digits in descending order), A009995 (numbers with distinct digits in descending order).

Formula

A178788(a(n)) = 1.

A330350 Table of strictly decreasing sequences with terms in {0, ..., 9}, sorted by length, then lexicographically.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 0, 2, 0, 2, 1, 3, 0, 3, 1, 3, 2, 4, 0, 4, 1, 4, 2, 4, 3, 5, 0, 5, 1, 5, 2, 5, 3, 5, 4, 6, 0, 6, 1, 6, 2, 6, 3, 6, 4, 6, 5, 7, 0, 7, 1, 7, 2, 7, 3, 7, 4, 7, 5, 7, 6, 8, 0, 8, 1, 8, 2, 8, 3, 8, 4, 8, 5, 8, 6, 8, 7, 9, 0, 9, 1, 9, 2, 9, 3, 9, 4, 9, 5, 9, 6, 9, 7, 9, 8
Offset: 1

Views

Author

M. F. Hasler, Dec 11 2019

Keywords

Comments

Row n lists the digits of A009995(n), just as row n < 1024 of A272011 lists the digits of A262557(n).

Examples

			The first rows start
   n | row n
   1 | 0,
   2 | 1,
    ...
  10 | 9,
  11 | 1, 0,
  12 | 2, 0,
  13 | 2, 1,
  14 | 3, 0,
  15 | 3, 1,
  16 | 3, 2,
  17 | 4, 0,
    ...
The Sury paper lists the first rows of length 3, row 56 = (2, 1, 0), row 57 = (3, 1, 0), row 58 = (3, 2, 0), row 59 = (3, 2, 1), row 60 = (4, 1, 0), ...
		

Crossrefs

Programs

  • PARI
    concat(0,[digits(n)|n<-[1..99],is_A009995(n)])

A385516 Perfect powers whose digits are in strictly decreasing order.

Original entry on oeis.org

1, 4, 8, 9, 32, 64, 81, 841, 961
Offset: 1

Views

Author

Stefano Spezia, Jul 01 2025

Keywords

Crossrefs

Programs

  • Mathematica
    perfectPowerQ[n_] := n==1 || GCD @@ FactorInteger[n][[All, 2]] > 1; (* A001597 *) Select[Range[1000], perfectPowerQ[#] && Max[Differences[IntegerDigits[#]]]<0 &]

A385517 Perfect powers whose digits are in nonincreasing order.

Original entry on oeis.org

1, 4, 8, 9, 32, 64, 81, 100, 400, 441, 841, 900, 961, 1000, 6400, 7744, 7776, 8000, 8100, 10000, 40000, 44100, 64000, 84100, 90000, 96100, 100000, 640000, 774400, 810000, 1000000, 3200000, 4000000, 4410000, 8000000, 8410000, 8874441, 9000000, 9610000, 9853321, 10000000
Offset: 1

Views

Author

Stefano Spezia, Jul 01 2025

Keywords

Crossrefs

Programs

  • Mathematica
    perfectPowerQ[n_] :=n==1 || GCD @@ FactorInteger[n][[All, 2]] > 1; (* A001597 *) Select[Range[10^6], perfectPowerQ[#] && Max[Differences[IntegerDigits[#]]]<1 &]

A260096 Numbers whose decimal and hexadecimal representations both have strictly decreasing digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 32, 50, 64, 65, 80, 81, 82, 83, 84, 96, 97, 98, 210, 54320, 54321, 64320, 64321, 65210, 764210
Offset: 1

Views

Author

Christian Perfect, Jul 16 2015

Keywords

Comments

Intersection of A009995 and A023797. - Michel Marcus, Jul 16 2015

Examples

			54321 belongs to the sequence because its digits are strictly decreasing and its hexadecimal representation, D431, also has strictly decreasing digits.
976210 doesn't belong to the sequence because, while its decimal digits are strictly decreasing, its hexadecimal representation EE552 is not strictly decreasing.
		

Crossrefs

Cf. A009995 (in base 10 only), A023797 (in base 16 only).

Programs

  • Mathematica
    dec[v_] := 0 > Max@ Differences@ v; Select[ Union[ FromDigits/@ Select[ Flatten[ Permutations/@ Subsets[ Range[0, 9]], 1], dec]], dec@ IntegerDigits[#, 16] &] (* Giovanni Resta, Jul 16 2015 *)
  • Python
    def decreasing(top):
        if top==0:
            yield []
            return
        for d in range(top):
            if d>0:
                yield [d]
            for s in decreasing(d):
                yield [d]+s
    def to_int(s):
        t = 0
        for d in s:
            t = t*10+d
        return t
    def to_hex(n):
        out = []
        if n==0:
            return [0]
        while n:
            m = n%16
            n = (n-m)//16
            out.insert(0,m)
        return out
    def is_decreasing(h):
        m = h[0]
        for d in h[1:]:
            if d>=m:
                return False
            m = d
        return True
    ns = sorted(to_int(s) for s in list(decreasing(10)))
    a = [n for n in ns if is_decreasing(to_hex(n))]

A381645 a(n) is the largest integer with distinct digits whose digital sum is n.

Original entry on oeis.org

0, 10, 20, 210, 310, 410, 3210, 4210, 5210, 6210, 43210, 53210, 63210, 73210, 83210, 543210, 643210, 743210, 843210, 943210, 953210, 6543210, 7543210, 8543210, 9543210, 9643210, 9743210, 9843210, 76543210, 86543210, 96543210, 97543210, 98543210, 98643210, 98743210, 98753210, 876543210, 976543210, 986543210, 987543210, 987643210, 987653210, 987654210, 987654310, 987654320, 9876543210
Offset: 0

Views

Author

Gonzalo Martínez, Mar 03 2025

Keywords

Comments

Since all the terms in this list have distinct digits, the highest possible digit sum is that of the number 987654321, which is 45. Therefore, this list is finite and has 46 terms.
All terms == 0 (mod 10).
All terms are members of A009995.

Examples

			For n = 5, the integers with distinct digits whose digital sum is 5 are: 5, 14, 23, 32, 41, 50, 104, 140, 203, 230, 302, 320, 401 and 410, where the largest of them is 410. So, a(5) = 410.
		

Crossrefs

Previous Showing 21-28 of 28 results.