cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 97 results. Next

A341125 Number of partitions of n into 7 prime powers (including 1).

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 13, 18, 22, 30, 35, 47, 54, 68, 78, 97, 107, 132, 146, 173, 190, 225, 242, 285, 305, 352, 377, 434, 456, 525, 553, 627, 659, 748, 778, 881, 916, 1028, 1068, 1197, 1232, 1381, 1421, 1578, 1619, 1801, 1837, 2041, 2079, 2296, 2337, 2583, 2613
Offset: 7

Views

Author

Ilya Gutkovskiy, Feb 05 2021

Keywords

Crossrefs

Programs

  • Maple
    q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(q(i), b(n-i, min(n-i, i), t-1), 0)))
        end:
    a:= n-> b(n$2, 7):
    seq(a(n), n=7..60);  # Alois P. Heinz, Feb 05 2021
  • Mathematica
    q[n_] := q[n] = Length[FactorInteger[n]] < 2;
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
         If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
         If[q[i], b[n - i, Min[n - i, i], t - 1], 0]]];
    a[n_] := b[n, n, 7];
    Table[a[n], {n, 7, 60}] (* Jean-François Alcover, Feb 22 2022, after Alois P. Heinz *)

A341126 Number of partitions of n into 8 prime powers (including 1).

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 13, 19, 23, 32, 38, 51, 60, 77, 90, 113, 128, 158, 179, 215, 240, 287, 316, 373, 409, 475, 517, 599, 645, 741, 799, 908, 971, 1104, 1173, 1326, 1408, 1580, 1670, 1874, 1967, 2198, 2310, 2563, 2680, 2976, 3097, 3426, 3566, 3926, 4070, 4485
Offset: 8

Views

Author

Ilya Gutkovskiy, Feb 05 2021

Keywords

Crossrefs

Programs

  • Maple
    q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(q(i), b(n-i, min(n-i, i), t-1), 0)))
        end:
    a:= n-> b(n$2, 8):
    seq(a(n), n=8..60);  # Alois P. Heinz, Feb 05 2021
  • Mathematica
    q[n_] := q[n] = Length[FactorInteger[n]] < 2;
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
         If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
         If[q[i], b[n - i, Min[n - i, i], t - 1], 0]]];
    a[n_] := b[n, n, 8];
    Table[a[n], {n, 8, 60}] (* Jean-François Alcover, Feb 22 2022, after _Alois P. Heinz *)

A341127 Number of partitions of n into 9 prime powers (including 1).

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 13, 19, 24, 33, 40, 54, 64, 83, 99, 125, 144, 180, 206, 250, 284, 341, 383, 455, 506, 593, 656, 762, 835, 965, 1054, 1206, 1309, 1491, 1610, 1825, 1964, 2213, 2374, 2664, 2843, 3179, 3387, 3769, 3998, 4440, 4695, 5194, 5480, 6043, 6357
Offset: 9

Views

Author

Ilya Gutkovskiy, Feb 05 2021

Keywords

Crossrefs

Programs

  • Maple
    q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(q(i), b(n-i, min(n-i, i), t-1), 0)))
        end:
    a:= n-> b(n$2, 9):
    seq(a(n), n=9..60);  # Alois P. Heinz, Feb 05 2021
  • Mathematica
    q[n_] := q[n] = Length[FactorInteger[n]] < 2;
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
         If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
         If[q[i], b[n - i, Min[n - i, i], t - 1], 0]]];
    a[n_] := b[n, n, 9];
    Table[a[n], {n, 9, 60}] (* Jean-François Alcover, Feb 22 2022, after Alois P. Heinz *)

A341140 Number of partitions of n into 3 distinct prime powers (including 1).

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 5, 5, 7, 6, 8, 7, 8, 8, 10, 10, 12, 11, 12, 12, 13, 12, 16, 15, 15, 16, 18, 17, 19, 20, 21, 24, 22, 22, 23, 25, 22, 27, 26, 25, 26, 29, 25, 31, 27, 30, 31, 34, 26, 34, 31, 35, 32, 38, 29, 40, 32, 36, 34, 41, 29, 44, 35, 41, 36, 47, 34, 51, 38, 45, 41, 54
Offset: 6

Views

Author

Ilya Gutkovskiy, Feb 05 2021

Keywords

Crossrefs

Programs

  • Maple
    q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(q(i), b(n-i, min(n-i, i-1), t-1), 0)))
        end:
    a:= n-> b(n$2, 3):
    seq(a(n), n=6..77);  # Alois P. Heinz, Feb 05 2021
  • Mathematica
    q[n_] := q[n] = PrimeNu[n] < 2;
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
         If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
         If[q[i], b[n - i, Min[n - i, i - 1], t - 1], 0]]];
    a[n_] := b[n, n, 3];
    Table[a[n], {n, 6, 77}] (* Jean-François Alcover, Jul 13 2021, after Alois P. Heinz *)

A341141 Number of partitions of n into 4 distinct prime powers (including 1).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 7, 9, 9, 11, 12, 15, 15, 19, 18, 21, 21, 26, 25, 30, 29, 35, 32, 39, 37, 45, 43, 52, 50, 58, 54, 62, 61, 71, 66, 75, 74, 81, 78, 89, 85, 96, 93, 102, 99, 110, 103, 115, 117, 122, 120, 131, 127, 136, 136, 139, 142, 153, 147, 154, 160, 163, 165, 177, 175
Offset: 10

Views

Author

Ilya Gutkovskiy, Feb 05 2021

Keywords

Crossrefs

Programs

  • Maple
    q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(q(i), b(n-i, min(n-i, i-1), t-1), 0)))
        end:
    a:= n-> b(n$2, 4):
    seq(a(n), n=10..76);  # Alois P. Heinz, Feb 05 2021
  • Mathematica
    q[n_] := q[n] = PrimeNu[n] < 2;
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
         If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
         If[q[i], b[n - i, Min[n - i, i - 1], t - 1], 0]]];
    a[n_] := b[n, n, 4];
    Table[a[n], {n, 10, 76}] (* Jean-François Alcover, Jul 13 2021, after Alois P. Heinz *)

A341142 Number of partitions of n into 5 distinct prime powers (including 1).

Original entry on oeis.org

1, 0, 1, 2, 3, 3, 5, 5, 7, 8, 10, 12, 15, 15, 18, 21, 23, 26, 31, 33, 36, 41, 43, 48, 52, 58, 62, 72, 72, 82, 85, 95, 97, 112, 112, 125, 127, 142, 142, 161, 159, 181, 180, 200, 196, 222, 217, 243, 239, 269, 261, 291, 284, 316, 308, 341, 332, 370, 358, 394, 381, 427, 414, 456
Offset: 15

Views

Author

Ilya Gutkovskiy, Feb 05 2021

Keywords

Crossrefs

Programs

  • Maple
    q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(q(i), b(n-i, min(n-i, i-1), t-1), 0)))
        end:
    a:= n-> b(n$2, 5):
    seq(a(n), n=15..78);  # Alois P. Heinz, Feb 05 2021
  • Mathematica
    q[n_] := q[n] = PrimeNu[n] < 2;
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
         If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
         If[q[i], b[n - i, Min[n - i, i - 1], t - 1], 0]]];
    a[n_] := b[n, n, 5];
    Table[a[n], {n, 15, 78}] (* Jean-François Alcover, Jul 13 2021, after Alois P. Heinz *)
    Table[Count[IntegerPartitions[n,{5}],?(Max[PrimeNu[#]]<2&&Length[#]==Length[Union[#]]&)],{n,15,80}] (* _Harvey P. Dale, Dec 22 2024 *)

A071140 Numbers n such that sum of distinct primes dividing n is divisible by largest prime dividing n; n is neither a prime, nor a true power of prime.

Original entry on oeis.org

30, 60, 70, 90, 120, 140, 150, 180, 240, 270, 280, 286, 300, 350, 360, 450, 480, 490, 540, 560, 572, 600, 646, 700, 720, 750, 810, 900, 960, 980, 1080, 1120, 1144, 1200, 1292, 1350, 1400, 1440, 1500, 1620, 1750, 1798, 1800, 1920, 1960, 2160, 2240, 2250
Offset: 1

Views

Author

Labos Elemer, May 13 2002

Keywords

Comments

a(n) are the numbers such that the difference between the largest and the smallest prime divisor equals the sum of the other distinct prime divisors. - Michel Lagneau, Nov 13 2011
The statement above is only true for 966 of the first 1000 terms. The first counterexample is a(140) = 15015. - Donovan Johnson, Apr 10 2013
Lagneau's definition can be simplified to the largest prime divisor equals the sum of the other distinct prime divisors. - Christian N. K. Anderson, Apr 15 2013

Examples

			n = 70 = 2*5*7 has a form of 2pq, where p and q are twin primes; n = 3135 = 3*5*11*19, sum = 3+5+11+19 = 38 = 2*19, divisible by 19.
		

Crossrefs

Programs

  • Haskell
    a071140 n = a071140_list !! (n-1)
    a071140_list = filter (\x -> a008472 x `mod` a006530 x == 0) a024619_list
    -- Reinhard Zumkeller, Apr 18 2013
  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] sb[x_] := Apply[Plus, ba[x]] ma[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] Do[s=sb[n]/ma[n]; If[IntegerQ[s]&&Greater[s, 1], Print[{n, ba[n]}]], {n, 2, 1000000}]
    (* Second program: *)
    Select[Range@ 2250, And[Length@ # > 1, Divisible[Total@ #, Last@ #]] &[FactorInteger[#][[All, 1]] ] &] (* Michael De Vlieger, Jul 18 2017 *)

Formula

A008472(n)/A006530(n) is an integer and n has at least 3 distinct prime factors.
A008472(a(n)) mod A006530(a(n)) = 0 and A010055(a(n)) = 0. - Reinhard Zumkeller, Apr 18 2013

A223491 Largest Fermi-Dirac factor of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 4, 9, 5, 11, 4, 13, 7, 5, 16, 17, 9, 19, 5, 7, 11, 23, 4, 25, 13, 9, 7, 29, 5, 31, 16, 11, 17, 7, 9, 37, 19, 13, 5, 41, 7, 43, 11, 9, 23, 47, 16, 49, 25, 17, 13, 53, 9, 11, 7, 19, 29, 59, 5, 61, 31, 9, 16, 13, 11, 67, 17, 23, 7, 71, 9
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 20 2013

Keywords

Comments

Greatest Fermi-Dirac factor of n: Largest divisor of n of the form p^(2^k), for some prime p and k >= 0, with a(1) = 1. Thus for n > 1, the largest term of A050376 that divides n. - Antti Karttunen, Apr 13 2018

Crossrefs

Cf. A223490, A050376, A034699, A000040 (subsequence), A302776, A302785, A302789 (ordinal transform).
Cf. also A006530, A034699.

Programs

  • Haskell
    a223491 = last . a213925_row
    
  • Mathematica
    f[p_, e_] := p^(2^Floor[Log2[e]]); a[n_] := Max @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 26 2020 *)
  • PARI
    ispow2(n) = (n && !bitand(n,n-1));
    A223491(n) = if(1==n,n,fordiv(n, d, if(ispow2(isprimepower(n/d)), return(n/d)))); \\ Antti Karttunen, Apr 13 2018

Formula

a(n) = A213925(n,A064547(n)).
A209229(A100995(a(n))) = 1; A010055(a(n)) = 1.
From Antti Karttunen, Apr 13 2018: (Start)
a(1) = 1; for n > 1, a(n) = A050376(A302785(n)).
a(n) = n/A302776(n).
(End)

A341133 Number of ways to write n as an ordered sum of 4 prime powers (including 1).

Original entry on oeis.org

1, 4, 10, 20, 35, 52, 72, 96, 125, 156, 196, 236, 277, 316, 362, 400, 451, 496, 554, 604, 668, 704, 770, 808, 871, 920, 1014, 1040, 1131, 1172, 1266, 1308, 1449, 1484, 1638, 1672, 1802, 1820, 1992, 1964, 2167, 2172, 2332, 2296, 2534, 2444, 2698, 2648, 2889, 2820, 3140
Offset: 4

Views

Author

Ilya Gutkovskiy, Feb 05 2021

Keywords

Crossrefs

Programs

  • Maple
    q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add(
          `if`(q(j), b(n-j, t-1), 0), j=1..n)))
        end:
    a:= n-> b(n, 4):
    seq(a(n), n=4..54);  # Alois P. Heinz, Feb 05 2021
  • Mathematica
    nmax = 54; CoefficientList[Series[Sum[Boole[PrimePowerQ[k] || k == 1] x^k, {k, 1, nmax}]^4, {x, 0, nmax}], x] // Drop[#, 4] &

A341134 Number of ways to write n as an ordered sum of 5 prime powers (including 1).

Original entry on oeis.org

1, 5, 15, 35, 70, 121, 190, 280, 395, 535, 711, 920, 1160, 1425, 1725, 2041, 2395, 2775, 3200, 3645, 4146, 4640, 5190, 5730, 6325, 6915, 7625, 8270, 9030, 9745, 10576, 11320, 12320, 13185, 14305, 15281, 16510, 17480, 18855, 19835, 21306, 22435, 24010, 25025, 26810, 27790, 29590
Offset: 5

Views

Author

Ilya Gutkovskiy, Feb 05 2021

Keywords

Crossrefs

Programs

  • Maple
    q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add(
          `if`(q(j), b(n-j, t-1), 0), j=1..n)))
        end:
    a:= n-> b(n, 5):
    seq(a(n), n=5..51);  # Alois P. Heinz, Feb 05 2021
  • Mathematica
    nmax = 51; CoefficientList[Series[Sum[Boole[PrimePowerQ[k] || k == 1] x^k, {k, 1, nmax}]^5, {x, 0, nmax}], x] // Drop[#, 5] &
Previous Showing 31-40 of 97 results. Next