cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A194393 Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - ) = 0, where r=sqrt(13) and < > denotes fractional part.

Original entry on oeis.org

2, 4, 6, 8, 24, 26, 28, 30, 32, 38, 40, 42, 44, 46, 62, 64, 66, 68, 70, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 138, 140, 142, 144, 146, 148, 150, 176, 178, 180, 182, 184, 186, 188, 204, 206, 208, 210, 212, 218, 220, 222, 224, 226, 242, 244
Offset: 1

Views

Author

Clark Kimberling, Aug 23 2011

Keywords

Comments

See A194368.

Crossrefs

Programs

  • Mathematica
    r = Sqrt[13]; c = 1/2;
    x[n_] := Sum[FractionalPart[k*r], {k, 1, n}]
    y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}]
    t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 400}];
    Flatten[Position[t1, 1]]       (* A194392 *)
    t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 300}];
    Flatten[Position[t2, 1]]       (* A194393 *)
    t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 100}];
    Flatten[Position[t3, 1]]       (* A194394 *)

A194394 Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - ) > 0, where r=sqrt(13) and < > denotes fractional part.

Original entry on oeis.org

5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 63, 65, 81, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 103, 109, 111, 113, 114, 115, 116, 117
Offset: 1

Views

Author

Clark Kimberling, Aug 23 2011

Keywords

Comments

See A194368.

Crossrefs

Programs

  • Mathematica
    r = Sqrt[13]; c = 1/2;
    x[n_] := Sum[FractionalPart[k*r], {k, 1, n}]
    y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}]
    t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 400}];
    Flatten[Position[t1, 1]]       (* A194392 *)
    t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 300}];
    Flatten[Position[t2, 1]]       (* A194393 *)
    t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 100}];
    Flatten[Position[t3, 1]]       (* A194394 *)

A177157 Decimal expansion of sqrt(221).

Original entry on oeis.org

1, 4, 8, 6, 6, 0, 6, 8, 7, 4, 7, 3, 1, 8, 5, 0, 5, 5, 2, 2, 6, 1, 2, 0, 0, 8, 2, 1, 3, 9, 3, 1, 3, 9, 6, 6, 5, 1, 4, 4, 8, 9, 8, 5, 5, 1, 3, 7, 2, 0, 8, 6, 1, 5, 6, 0, 5, 6, 3, 0, 9, 4, 8, 1, 0, 2, 5, 1, 8, 3, 7, 3, 1, 4, 7, 8, 1, 1, 6, 7, 6, 5, 8, 6, 1, 5, 8, 3, 6, 4, 6, 0, 2, 7, 3, 9, 6, 1, 1, 0, 0, 7, 2, 4, 1
Offset: 2

Views

Author

Klaus Brockhaus, May 03 2010

Keywords

Comments

Continued fraction expansion of sqrt(221) is A040206.

Examples

			sqrt(221) = 14.86606874731850552261...
		

Crossrefs

Cf. A010470 (decimal expansion of sqrt(13)), A010473 (decimal expansion of sqrt(17)), A177156 (decimal expansion of (9+sqrt(221))/14), A040206 (14 followed by (repeat 1, 6, 2, 6, 1, 28)).

A344069 Decimal expansion of sqrt(13)/3.

Original entry on oeis.org

1, 2, 0, 1, 8, 5, 0, 4, 2, 5, 1, 5, 4, 6, 6, 3, 0, 9, 7, 7, 0, 6, 4, 0, 7, 0, 8, 9, 1, 5, 6, 8, 3, 1, 9, 8, 2, 0, 8, 3, 7, 6, 5, 5, 2, 4, 6, 1, 5, 0, 8, 2, 0, 7, 0, 9, 0, 3, 4, 8, 4, 3, 5, 2, 0, 7, 5, 7, 2, 2, 3, 1, 6, 0, 9, 7, 6, 7, 0, 1, 4, 8, 4, 0, 1, 5, 3, 9, 6, 9, 4, 0, 0
Offset: 1

Views

Author

Wesley Ivan Hurt, May 08 2021

Keywords

Comments

Draw two congruent line segments inside the unit square from the same vertex of the square to opposite sides of the square. sqrt(13)/3 is the length of each line segment needed to dissect the square into 3 regions with equal areas.

Examples

			1.201850425154663097706...
		

Crossrefs

Cf. A010470.

Programs

  • Mathematica
    RealDigits[Sqrt[13]/3, 10, 100][[1]]

A020770 Decimal expansion of 1/sqrt(13).

Original entry on oeis.org

2, 7, 7, 3, 5, 0, 0, 9, 8, 1, 1, 2, 6, 1, 4, 5, 6, 1, 0, 0, 9, 1, 7, 0, 8, 6, 6, 7, 2, 8, 4, 9, 9, 6, 8, 8, 1, 7, 3, 1, 7, 6, 6, 5, 9, 5, 2, 6, 5, 5, 7, 4, 0, 0, 9, 7, 7, 7, 2, 7, 1, 5, 8, 1, 7, 1, 3, 2, 0, 5, 3, 4, 4, 8, 4, 0, 7, 7, 7, 2, 6, 5, 5, 4, 2, 0, 1, 4, 6, 7, 8, 4, 7, 5, 7, 6, 2, 0, 9
Offset: 0

Views

Author

Keywords

Comments

1/sqrt(13) = 0.277350098112614561009170866728499688173176659526557400977727158171320534484... [Vladimir Joseph Stephan Orlovsky, May 30 2010]

Crossrefs

Cf. A010470.

Programs

A172274 a(n) = floor(n*(sqrt(13)-sqrt(11))).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 23
Offset: 0

Views

Author

Vincenzo Librandi, Jan 30 2010

Keywords

Crossrefs

Programs

  • Magma
    [Floor(n*(Sqrt(13)-Sqrt(11))): n in [0..80]]; // Vincenzo Librandi, Aug 01 2013
  • Mathematica
    With[{c = Sqrt[13] - Sqrt[11]}, Floor[c Range[0, 80]]] (* Vincenzo Librandi, Aug 01 2013 *)

Formula

a(n) = floor(n*(A010470 - A010468)). - Rick L. Shepherd, Jun 17 2010

Extensions

Edited by Rick L. Shepherd, Jun 17 2010

A177016 Decimal expansion of sqrt(16926).

Original entry on oeis.org

1, 3, 0, 0, 9, 9, 9, 6, 1, 5, 6, 8, 0, 1, 8, 9, 1, 9, 9, 9, 5, 5, 0, 4, 4, 8, 1, 8, 4, 6, 6, 1, 8, 9, 9, 6, 0, 3, 7, 3, 1, 4, 4, 7, 2, 1, 9, 7, 7, 7, 9, 2, 5, 0, 1, 0, 9, 9, 3, 8, 2, 6, 2, 3, 7, 4, 0, 2, 1, 2, 0, 6, 1, 0, 3, 6, 4, 2, 4, 9, 7, 8, 1, 6, 2, 1, 9, 4, 5, 4, 0, 5, 2, 9, 1, 4, 6, 9, 6, 4, 9, 0, 4, 1, 8
Offset: 3

Views

Author

Klaus Brockhaus, May 01 2010

Keywords

Comments

Continued fraction expansion of sqrt(16926) is 130 followed by (repeat 10, 260).
sqrt(16926) = sqrt(2)*sqrt(3)*sqrt(7)*sqrt(13)*sqrt(31).

Examples

			sqrt(16926) = 130.09996156801891999550...
		

Crossrefs

Cf. A002193 (decimal expansion of sqrt(2)), A002194 (decimal expansion of sqrt(3)), A010465 (decimal expansion of sqrt(7)), A010470 (decimal expansion of sqrt(13)), A010486 (decimal expansion of sqrt(31)), A177015 (decimal expansion of (124+sqrt(16926))/25).

A177925 Decimal expansion of sqrt(2730).

Original entry on oeis.org

5, 2, 2, 4, 9, 4, 0, 1, 9, 1, 0, 4, 5, 2, 5, 2, 5, 2, 9, 3, 7, 9, 4, 2, 6, 9, 3, 9, 4, 1, 4, 0, 0, 9, 8, 4, 9, 4, 4, 7, 6, 3, 4, 3, 5, 1, 8, 9, 8, 1, 8, 1, 1, 7, 1, 3, 5, 8, 7, 6, 3, 6, 9, 8, 9, 7, 4, 5, 6, 5, 2, 4, 2, 7, 8, 0, 4, 3, 1, 4, 6, 0, 8, 9, 1, 7, 0, 4, 6, 8, 8, 4, 7, 1, 0, 2, 8, 0, 7, 2, 2, 0, 8, 4, 8
Offset: 2

Views

Author

Klaus Brockhaus, May 15 2010

Keywords

Comments

Continued fraction expansion of sqrt(2730) is 52 followed by (repeat 4, 104).
sqrt(2730) = sqrt(2)*sqrt(3)*sqrt(5)*sqrt(7)*sqrt(13).

Examples

			sqrt(2730) = 52.24940191045252529379...
		

Crossrefs

Cf. A002193 (decimal expansion of sqrt(2)), A002194 (decimal expansion of sqrt(3)), A002163 (decimal expansion of sqrt(5)), A010465 (decimal expansion of sqrt(7)), A010470 (decimal expansion of sqrt(13)), A177924 (decimal expansion of (28+sqrt(2730))/56).

Programs

  • Mathematica
    RealDigits[Sqrt[2730],10,120][[1]] (* Harvey P. Dale, Aug 11 2021 *)

A379533 Decimal expansion of (sqrt(13) - 1)/36.

Original entry on oeis.org

0, 7, 2, 3, 7, 6, 4, 2, 4, 3, 1, 8, 4, 4, 4, 1, 4, 7, 0, 3, 1, 0, 8, 9, 4, 7, 9, 6, 5, 1, 9, 5, 8, 2, 2, 0, 7, 2, 9, 2, 0, 2, 6, 8, 2, 6, 0, 6, 8, 1, 2, 3, 9, 4, 7, 9, 7, 5, 1, 2, 5, 8, 4, 8, 9, 5, 1, 9, 9, 0, 8, 1, 8, 9, 7, 0, 2, 8, 0, 6, 7, 9, 2, 2, 3, 5, 0, 5, 3, 0, 0, 5, 6, 0, 6, 9, 1, 8, 6, 6, 0
Offset: 0

Views

Author

Stefano Spezia, Dec 24 2024

Keywords

Comments

Lower bound to the 8th Heilbronn triangle constant.

Examples

			0.072376424318444147031089479651958220729202682606812...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.16, p. 527.

Crossrefs

Programs

  • Mathematica
    RealDigits[(Sqrt[13]-1)/36,10,100][[1]]

Formula

Minimal polynomial: 108*x^2 + 6*x - 1. - Stefano Spezia, Aug 03 2025

A381485 Decimal expansion of sqrt(13)/6.

Original entry on oeis.org

6, 0, 0, 9, 2, 5, 2, 1, 2, 5, 7, 7, 3, 3, 1, 5, 4, 8, 8, 5, 3, 2, 0, 3, 5, 4, 4, 5, 7, 8, 4, 1, 5, 9, 9, 1, 0, 4, 1, 8, 8, 2, 7, 6, 2, 3, 0, 7, 5, 4, 1, 0, 3, 5, 4, 5, 1, 7, 4, 2, 1, 7, 6, 0, 3, 7, 8, 6, 1, 1, 5, 8, 0, 4, 8, 8, 3, 5, 0, 7, 4, 2, 0, 0, 7, 6, 9, 8, 4, 7, 0, 0, 3, 0, 8, 1, 7, 8, 6, 2, 7, 8, 9, 1, 9
Offset: 0

Views

Author

Amiram Eldar, Feb 24 2025

Keywords

Comments

The greatest possible minimum distance between 6 points in a unit square.
The solution was found by Ronald L. Graham and reported by Schaer (1965).

Examples

			0.60092521257733154885320354457841599104188276230754...
		

References

  • Hallard T. Croft, Kenneth J. Falconer, and Richard K. Guy, Unsolved Problems in Geometry, Springer, 1991, Section D1, p. 108.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, Vol. 94, Cambridge University Press, 2003, Section 8.2, p. 487.

Crossrefs

Solutions for k points: A002193 (k = 2), A120683 (k = 3), 1 (k = 4), A010503 (k = 5), this constant (k = 6), A379338 (k = 7), A101263 (k = 8), A020761 (k = 9), A281065 (k = 10).

Programs

  • Mathematica
    RealDigits[Sqrt[13] / 6, 10, 120][[1]]
  • PARI
    list(len) = digits(floor(10^len*quadgen(52)/6));

Formula

Equals A010470 / 6 = A295330 / 3 = A344069 / 2 = A176019 - 1/2 = sqrt(A142464).
Minimal polynomial: 36*x^2 - 13.
Previous Showing 11-20 of 20 results.