cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A195289 Decimal expansion of normalized Philo sum, Philo(ABC,I), where I=incenter of a 3,4,5 right triangle ABC.

Original entry on oeis.org

4, 8, 4, 7, 8, 2, 3, 8, 5, 3, 6, 6, 1, 7, 5, 3, 4, 8, 3, 3, 5, 1, 6, 5, 4, 1, 8, 0, 2, 2, 8, 1, 1, 5, 2, 7, 8, 0, 8, 8, 2, 5, 5, 4, 5, 2, 2, 8, 2, 5, 9, 9, 2, 3, 4, 1, 2, 9, 5, 4, 4, 3, 3, 4, 6, 0, 2, 1, 8, 8, 6, 9, 4, 6, 2, 9, 6, 2, 9, 3, 6, 8, 4, 9, 2, 7, 9, 5, 9, 9, 8, 0, 7, 0, 1, 2, 2, 0, 6, 2
Offset: 0

Views

Author

Clark Kimberling, Sep 14 2011

Keywords

Comments

See A195284 for definitions and a general discussion.

Examples

			Philo(ABC,I)=0.4847823853661753483351654180...
		

Crossrefs

Cf. A195284.

Programs

  • Mathematica
    a = 5; b = 12; c = 13;
    h = a (a + c)/(a + b + c); k = a*b/(a + b + c);
    f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2;
    s = NSolve[D[f[t], t] == 0, t, 150]
    f1 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (A) A195286 *)
    f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f3 = (f[t])^(1/2) /. Part[s, 1]
    RealDigits[%, 10, 100] (* (B) A195288 *)
    f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f2 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (C) A010487 *)
    (f1 + f2 + f3)/(a + b + c)
    RealDigits[%, 10, 100] (* Philo(A,B,C,I) A195289 *)

A387321 Decimal expansion of the second largest dihedral angle, in radians, in a gyroelongated square cupola (Johnson solid J_23).

Original entry on oeis.org

2, 6, 4, 1, 2, 0, 9, 0, 0, 0, 3, 7, 4, 0, 3, 9, 5, 4, 4, 0, 2, 1, 4, 5, 1, 0, 5, 2, 8, 5, 1, 1, 3, 5, 8, 3, 2, 6, 7, 9, 8, 7, 1, 6, 7, 8, 2, 5, 4, 8, 2, 9, 5, 2, 6, 2, 7, 5, 0, 5, 3, 7, 4, 4, 6, 2, 4, 5, 2, 5, 3, 7, 1, 3, 7, 8, 9, 6, 2, 7, 0, 0, 0, 5, 2, 0, 7, 5, 4, 4
Offset: 1

Views

Author

Paolo Xausa, Aug 27 2025

Keywords

Comments

This is the dihedral angle between adjacent triangular faces at the edge where the antiprism and cupola parts of the solid meet.
Also the analogous dihedral angle in a gyroelongated square bicupola (Johnson solid J_45).

Examples

			2.6412090003740395440214510528511358326798716782548...
		

Crossrefs

Cf. other J_23 dihedral angles: A177870, A195702, A387320, A387322, A387323.
Cf. A384214 (J_23 volume), A384215 (J_23 surface area).
Cf. A385258 (J_45 volume), A385259 (J_45 surface area).

Programs

  • Mathematica
    First[RealDigits[ArcSec[Sqrt[3]] + ArcCos[-Sqrt[(7 + Sqrt[32] - 2*Sqrt[20 + 14*Sqrt[2]])/3]], 10, 100]] (* or *)
    First[RealDigits[RankedMax[Union[PolyhedronData["J23", "DihedralAngles"]],2], 10, 100]]

Formula

Equals arcsec(sqrt(3)) + arccos(-sqrt((7 + 4*sqrt(2) - 2*sqrt(20 + 14*sqrt(2)))/3)) = A195696 + arccos(-sqrt((7 + A010487 - 2*sqrt(20 + 14*A002193))/3)).
Equals A195696 + A387323.

A387322 Decimal expansion of the fourth largest dihedral angle, in radians, in a gyroelongated square cupola (Johnson solid J_23).

Original entry on oeis.org

2, 4, 7, 1, 2, 9, 0, 5, 4, 5, 6, 4, 6, 9, 7, 8, 5, 7, 5, 4, 7, 3, 2, 5, 4, 7, 9, 6, 1, 5, 5, 2, 5, 3, 7, 9, 9, 4, 8, 5, 7, 4, 9, 3, 3, 3, 0, 8, 8, 6, 0, 0, 4, 9, 0, 5, 5, 9, 0, 9, 1, 7, 6, 3, 3, 7, 9, 5, 6, 7, 4, 2, 7, 0, 4, 6, 5, 3, 8, 4, 9, 4, 3, 2, 1, 6, 9, 2, 5, 4
Offset: 1

Views

Author

Paolo Xausa, Aug 29 2025

Keywords

Comments

This is the dihedral angle between a triangular face and a square face at the edge where the antiprism and cupola parts of the solid meet.
Also the analogous dihedral angle in a gyroelongated square bicupola (Johnson solid J_45).

Examples

			2.4712905456469785754732547961552537994857493330886...
		

Crossrefs

Cf. other J_23 dihedral angles: A177870, A195702, A387320, A387321, A387323.
Cf. A384214 (J_23 volume), A384215 (J_23 surface area).
Cf. A385258 (J_45 volume), A385259 (J_45 surface area).

Programs

  • Mathematica
    First[RealDigits[Pi/4 + ArcCos[-Sqrt[(7 + Sqrt[32] - 2*Sqrt[20 + 14*Sqrt[2]])/3]], 10, 100]] (* or *)
    First[RealDigits[RankedMax[Union[PolyhedronData["J23", "DihedralAngles"]], 4], 10, 100]]

Formula

Equals Pi/4 + arccos(-sqrt((7 + 4*sqrt(2) - 2*sqrt(20 + 14*sqrt(2)))/3)) = A003881 + arccos(-sqrt((7 + A010487 - 2*sqrt(20 + 14*A002193))/3)).
Equals A003881 + A387323.

A387323 Decimal expansion of the smallest dihedral angle, in radians, in a gyroelongated square cupola (Johnson solid J_23).

Original entry on oeis.org

1, 6, 8, 5, 8, 9, 2, 3, 8, 2, 2, 4, 9, 5, 3, 0, 2, 6, 5, 8, 5, 7, 5, 9, 3, 9, 5, 0, 3, 3, 5, 3, 7, 8, 0, 7, 8, 4, 3, 6, 4, 5, 6, 9, 8, 3, 2, 4, 4, 8, 2, 4, 0, 3, 5, 3, 1, 5, 3, 5, 5, 6, 1, 5, 3, 0, 2, 6, 1, 3, 3, 2, 5, 4, 7, 4, 9, 8, 6, 2, 4, 4, 6, 6, 4, 6, 8, 3, 8, 3
Offset: 1

Views

Author

Paolo Xausa, Aug 29 2025

Keywords

Comments

This is the dihedral angle between a triangular face and the octagonal face.

Examples

			1.6858923822495302658575939503353780784364569832448...
		

Crossrefs

Cf. other J_23 dihedral angles: A177870, A195702, A387320, A387321, A387322.
Cf. A384214 (J_23 volume), A384215 (J_23 surface area).

Programs

  • Mathematica
    First[RealDigits[ArcCos[-Sqrt[(7 + Sqrt[32] - 2*Sqrt[20 + 14*Sqrt[2]])/3]], 10, 100]] (* or *)
    First[RealDigits[Min[PolyhedronData["J23", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(-sqrt((7 + 4*sqrt(2) - 2*sqrt(20 + 14*sqrt(2)))/3)) = arccos(-sqrt((7 + A010487 - 2*sqrt(20 + 14*A002193))/3)).

A010130 Continued fraction for sqrt(32).

Original entry on oeis.org

5, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10
Offset: 0

Views

Author

Keywords

Examples

			5.65685424949238019520675489... = 5 + 1/(1 + 1/(1 + 1/(1 + 1/(10 + ...)))). - _Harry J. Smith_, Jun 04 2009
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A010487 (decimal expansion).
Cf. A041052/A041053 (convergents), A248259 (Egyptian fraction).

Programs

  • Mathematica
    ContinuedFraction[Sqrt[32],300] (* Vladimir Joseph Stephan Orlovsky, Mar 06 2011 *)
    PadRight[{5},100,{10,1,1,1}] (* Harvey P. Dale, Aug 20 2014 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 16000); x=contfrac(sqrt(32)); for (n=0, 20000, write("b010130.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 04 2009

Formula

From Amiram Eldar, Nov 12 2023: (Start)
Multiplicative with a(2) = 1, a(2^e) = 10 for e >= 2, and a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 + 9/4^s). (End)
From Elmo R. Oliveira, Aug 05 2024: (Start)
G.f.: (5 + x + x^2 + x^3 + 5*x^4)/((1 - x)*(1 + x + x^2 + x^3)).
a(n) = a(n-4), n > 4. (End)

A041052 Numerators of continued fraction convergents to sqrt(32).

Original entry on oeis.org

5, 6, 11, 17, 181, 198, 379, 577, 6149, 6726, 12875, 19601, 208885, 228486, 437371, 665857, 7095941, 7761798, 14857739, 22619537, 241053109, 263672646, 504725755, 768398401, 8188709765, 8957108166, 17145817931, 26102926097, 278175078901, 304278004998
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: (5+6*x+11*x^2+17*x^3+11*x^4-6*x^5+5*x^6-x^7)/(1-34*x^4+x^8). - Colin Barker, Jan 03 2012

A365165 Length of the perimeter of the regular 9-gon with unit circumradius.

Original entry on oeis.org

6, 1, 5, 6, 3, 6, 2, 5, 7, 9, 8, 6, 2, 0, 3, 7, 1, 9, 4, 7, 9, 3, 7, 9, 3, 0, 6, 4, 2, 8, 0, 6, 7, 2, 4, 5, 3, 7, 3, 5, 5, 0, 0, 6, 1, 5, 2, 5, 4, 8, 9, 1, 3, 1, 2, 3, 7, 0, 8, 7, 2, 9, 5, 8, 3, 2, 4, 8, 6, 5, 7, 4, 6, 6, 3, 7, 3, 9, 6, 7, 9, 2, 1, 5, 5, 4, 2, 3, 2, 8, 2, 0, 9, 3, 4, 5, 9, 8, 5, 5
Offset: 1

Views

Author

R. J. Mathar, Aug 24 2023

Keywords

Examples

			6.1563625798620371947937930642806724537...
		

Crossrefs

Cf. A019845 (5-gon), A010487 (4-gon), A365163 (7-gon), A365164 (8-gon), A272488 (edge length).

Programs

  • Mathematica
    First[RealDigits[18*Sin[Pi/9], 10, 100]] (* Paolo Xausa, Mar 19 2024 *)

Formula

Equals 9*A272488.

A384287 Decimal expansion of the volume of a square orthobicupola with unit edge.

Original entry on oeis.org

3, 8, 8, 5, 6, 1, 8, 0, 8, 3, 1, 6, 4, 1, 2, 6, 7, 3, 1, 7, 3, 5, 5, 8, 4, 9, 6, 5, 6, 1, 2, 9, 3, 0, 7, 7, 1, 4, 2, 6, 2, 2, 9, 1, 6, 7, 1, 6, 9, 2, 6, 4, 0, 9, 7, 5, 6, 8, 9, 0, 6, 3, 1, 7, 3, 2, 0, 9, 7, 6, 6, 3, 7, 9, 4, 9, 4, 7, 6, 0, 5, 1, 8, 0, 0, 5, 1, 6, 7, 1
Offset: 1

Views

Author

Paolo Xausa, Jun 05 2025

Keywords

Comments

The square orthobicupola is Johnson solid J_28.
Also the volume of a square gyrobicupola (Johnson solid J_29) with unit edge.

Examples

			3.885618083164126731735584965612930771426229167169...
		

Crossrefs

Cf. A010469 (surface area - 10).

Programs

  • Mathematica
    First[RealDigits[2 + Sqrt[32]/3, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J28", "Volume"], 10, 100]]

Formula

Equals 2 + (4/3)*sqrt(2) = 2 + (4/3)*A002193 = 2 + A010487/3.
Equals the largest root of 9*x^2 - 36*x + 4.

A365163 Length of the perimeter of the regular heptagon with unit circumradius.

Original entry on oeis.org

6, 0, 7, 4, 3, 7, 2, 3, 4, 7, 6, 4, 5, 8, 1, 3, 6, 8, 6, 6, 6, 0, 7, 5, 6, 6, 5, 9, 8, 7, 7, 0, 2, 2, 5, 6, 4, 5, 3, 9, 8, 7, 0, 1, 8, 9, 0, 2, 4, 4, 3, 8, 2, 7, 0, 2, 2, 3, 6, 6, 2, 2, 4, 9, 4, 5, 0, 8, 4, 5, 5, 2, 3, 1, 4, 4, 7, 7, 7, 9, 0, 1, 2, 9, 0, 9, 7, 6, 3, 0, 4, 8
Offset: 1

Views

Author

R. J. Mathar, Aug 24 2023

Keywords

Examples

			6.0743723476458136866607566598...
		

Crossrefs

Cf. A019845 (5-gon), A010487 (4-gon), A365164 (8-gon), A365165 (9-gon), A272487 (edge length), A104957 (area).

Programs

  • Mathematica
    f[R_, s_] := 2*R*s*Sin[Pi/s]; a[n_] := RealDigits[f[1, 7], 10, n][[1]]; a[92] (* Robert P. P. McKone, Aug 24 2023 *)

Formula

Equals 7*A272487.

A365164 Length of the perimeter of the regular octagon with unit circumradius.

Original entry on oeis.org

6, 1, 2, 2, 9, 3, 4, 9, 1, 7, 8, 4, 1, 4, 3, 6, 3, 4, 7, 6, 5, 5, 3, 5, 9, 7, 4, 4, 4, 8, 6, 3, 8, 1, 8, 6, 8, 1, 8, 1, 5, 1, 2, 9, 9, 9, 7, 7, 0, 0, 3, 2, 6, 6, 2, 9, 4, 0, 8, 1, 0, 1, 7, 0, 0, 4, 0, 7, 3, 6, 5, 4, 3, 3, 6, 1, 4, 3, 5, 0, 7, 5, 7, 9, 2, 2, 2, 0, 5, 6, 5, 4, 7, 6, 5, 3, 6, 7, 5, 4, 3, 7, 4, 7, 8, 8, 6, 1, 8
Offset: 1

Views

Author

R. J. Mathar, Aug 24 2023

Keywords

Examples

			6.122934917841436347655359744486...
		

Crossrefs

Cf. A019845 (5-gon), A010487 (4-gon), A365163 (7-gon), A365165 (9-gon), A101464 (edge length), A010466 (area).

Programs

  • Mathematica
    f[R_, s_] := 2*R*s*Sin[Pi/s]; a[n_] := RealDigits[f[1, 8], 10, n][[1]]; a[109] (* Robert P. P. McKone, Aug 24 2023 *)

Formula

Equals 8*A101464.
Previous Showing 11-20 of 24 results. Next