cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 81 results. Next

A371467 Decimal expansion of Product_{k>=0} (1 - 1/(3*k+2)^2).

Original entry on oeis.org

6, 8, 4, 4, 6, 3, 4, 0, 5, 9, 7, 9, 7, 2, 5, 7, 2, 7, 0, 1, 1, 0, 7, 6, 9, 7, 8, 8, 6, 6, 3, 4, 6, 3, 2, 8, 9, 5, 5, 6, 8, 3, 8, 0, 8, 7, 3, 5, 7, 3, 0, 2, 8, 3, 9, 2, 1, 5, 3, 8, 9, 4, 6, 0, 3, 9, 3, 3, 9, 0, 2, 1, 8, 1, 3, 2, 3, 8, 3, 4, 6, 4, 4, 3, 4, 5, 1, 0, 3, 6, 4, 7, 6, 6, 8, 2, 2, 0, 1, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 31 2024

Keywords

Examples

			0.6844634059797257270110769788663463289556838...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(4/3) Pi^2/Gamma[1/3]^3, 10, 100][[1]]

Formula

Equals (4/3) * Pi^2 / Gamma(1/3)^3.
Equals 1/A224273. - Hugo Pfoertner, Mar 31 2024

A381485 Decimal expansion of sqrt(13)/6.

Original entry on oeis.org

6, 0, 0, 9, 2, 5, 2, 1, 2, 5, 7, 7, 3, 3, 1, 5, 4, 8, 8, 5, 3, 2, 0, 3, 5, 4, 4, 5, 7, 8, 4, 1, 5, 9, 9, 1, 0, 4, 1, 8, 8, 2, 7, 6, 2, 3, 0, 7, 5, 4, 1, 0, 3, 5, 4, 5, 1, 7, 4, 2, 1, 7, 6, 0, 3, 7, 8, 6, 1, 1, 5, 8, 0, 4, 8, 8, 3, 5, 0, 7, 4, 2, 0, 0, 7, 6, 9, 8, 4, 7, 0, 0, 3, 0, 8, 1, 7, 8, 6, 2, 7, 8, 9, 1, 9
Offset: 0

Views

Author

Amiram Eldar, Feb 24 2025

Keywords

Comments

The greatest possible minimum distance between 6 points in a unit square.
The solution was found by Ronald L. Graham and reported by Schaer (1965).

Examples

			0.60092521257733154885320354457841599104188276230754...
		

References

  • Hallard T. Croft, Kenneth J. Falconer, and Richard K. Guy, Unsolved Problems in Geometry, Springer, 1991, Section D1, p. 108.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, Vol. 94, Cambridge University Press, 2003, Section 8.2, p. 487.

Crossrefs

Solutions for k points: A002193 (k = 2), A120683 (k = 3), 1 (k = 4), A010503 (k = 5), this constant (k = 6), A379338 (k = 7), A101263 (k = 8), A020761 (k = 9), A281065 (k = 10).

Programs

  • Mathematica
    RealDigits[Sqrt[13] / 6, 10, 120][[1]]
  • PARI
    list(len) = digits(floor(10^len*quadgen(52)/6));

Formula

Equals A010470 / 6 = A295330 / 3 = A344069 / 2 = A176019 - 1/2 = sqrt(A142464).
Minimal polynomial: 36*x^2 - 13.

A385694 Decimal expansion of the volume of a triaugmented hexagonal prism with unit edge.

Original entry on oeis.org

3, 3, 0, 5, 1, 8, 2, 9, 9, 2, 5, 3, 9, 8, 6, 3, 4, 6, 4, 6, 9, 2, 0, 1, 3, 8, 7, 4, 3, 6, 3, 6, 5, 7, 5, 8, 9, 6, 9, 9, 0, 4, 3, 8, 1, 8, 4, 0, 4, 0, 4, 4, 9, 7, 8, 6, 7, 2, 0, 5, 0, 3, 3, 8, 1, 7, 3, 2, 6, 5, 7, 6, 4, 5, 9, 4, 2, 5, 3, 5, 7, 5, 0, 4, 6, 9, 1, 3, 0, 4
Offset: 1

Views

Author

Paolo Xausa, Jul 07 2025

Keywords

Comments

The triaugmented hexagonal prism is Johnson solid J_57.

Examples

			3.3051829925398634646920138743636575896990438184040...
		

Crossrefs

Cf. A385259 (surface area + 7).

Programs

  • Mathematica
    First[RealDigits[1/Sqrt[2] + 3*Sqrt[3]/2, 10, 100]]
    First[RealDigits[PolyhedronData["J57", "Volume"], 10, 100]]

Formula

Equals 1/sqrt(2) + 3*sqrt(3)/2 = A010503 + A104956.
Equals the largest root of 16*x^4 - 232*x^2 + 625.

A079059 Decimal expansion of product( p == 3 (mod 4), sqrt(1-p^-2)).

Original entry on oeis.org

9, 2, 5, 2, 6, 1, 5, 7, 4, 7, 5, 7, 0, 4, 8, 6, 2, 2, 6, 2, 7, 0, 7, 0, 4, 2, 2, 9, 6, 6, 9, 6, 3, 4, 4, 2, 6, 4, 2, 4, 7, 3, 4, 7, 8, 7, 8, 8, 6, 5, 1, 1, 1, 4, 0, 6, 6, 3, 3, 0, 8, 8, 5, 9, 9, 1, 9, 5, 9, 7, 5, 3, 2, 7, 7, 0, 3, 5, 1, 4, 1, 6, 8, 0, 4, 9, 5
Offset: 0

Views

Author

Benoit Cloitre, Feb 02 2003

Keywords

Comments

The complementary product_{p == 1 (mod 4)} sqrt(1-1/p^2) = 0.97303... is related: 0.925261....*0.97303... = sqrt(4/3)/sqrt(Zeta(2)) = 10*A020832/sqrt(A013661). [R. J. Mathar, Jan 31 2009]

References

  • E. Landau, "Handbuch der Lehre von der Verteilung der Primzahlen", vol. 2, Teubner, Leipzig; third edition: Chelsea, New York (1974), pp. 641-669

Crossrefs

Cf. A071903.

Programs

  • PARI
    prod(k=1,40000,if(prime(k)%4-3,1,sqrt(1-prime(k)^-2)))

Formula

product( p == 3 (mod 4), sqrt(1-p^-2)) = 0.92526...
Equals 1/(sqrt(2)*A064533) = A010503/A064533. [R. J. Mathar, Jul 29 2010]

Extensions

Corrected offset and leading zero R. J. Mathar, Jan 31 2009
More digits from R. J. Mathar, Jul 28 2010
More digits, using the Jul 29 2010 formula from R. J. Mathar, from Jon E. Schoenfield, Nov 05 2016

A199861 The decimal expansion (unsigned) of the value of d that maximizes the Brahmagupta expression given below.

Original entry on oeis.org

2, 2, 7, 1, 0, 6, 4, 4, 8, 2, 9, 4, 3, 8, 1, 2, 0, 3, 0, 1, 1, 1, 4, 3, 3, 5, 2, 5, 3, 2, 3, 4, 4, 6, 1, 8, 3, 7, 7, 5, 4, 0, 5, 3, 1, 2, 9, 8, 6, 7, 4, 9, 6, 2, 9, 3, 2, 5, 4, 0, 3, 5, 4, 5, 5, 0, 4, 8, 1, 2, 6, 1, 0, 0, 0, 1, 6, 0, 1, 8, 4, 3, 7, 1, 1, 6, 7, 7, 4, 5, 2, 8, 4, 9, 4, 9, 4, 5, 8, 6, 3, 5, 8
Offset: 0

Views

Author

Frank M Jackson, Nov 11 2011

Keywords

Comments

Brahmagupta expression sqrt((-1+1/(1+d)+1/(1+2d)+1/(1+3d)) * (1-1/(1+d)+1/(1+2d)+1/(1+3d)) * (1+1/(1+d)-1/(1+2d)+1/(1+3d)) * (1+1/(1+d)+1/(1+2d)-1/(1+3d)))/4 for d in the interval [-1/3, inf] where 1/(1+d), 1/(1+2d) and 1/(1+3d) are always positive.
The area of a convex quadrilateral with fixed sides is maximal when it is organized as a convex cyclic quadrilateral. Furthermore in order that a quadrilateral can have sides in a harmonic progression 1 : 1/(1+d) : 1/(1+2d) : 1/(1+3d) its denominator's common difference d is limited to the range f < d < g where f is the constant A199590 and g is the constant A199589. Consequently when d=-0.2271064482... it maximizes Brahmagupta's expression for the area of a convex cyclic quadrilateral whose sides form a harmonic progression.

Examples

			-0.22710644829438120301114335253234461837754...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[d/.NMaximize[{Sqrt[(-1+1/(1+d)+1/(1+2d)+1/(1+3d))(1-1/(1+d)+1/(1+2d)+1/(1+3d))(1+1/(1+d)-1/(1+2d)+1/(1+3d))(1+1/(1+d)+1/(1+2d)-1/(1+3d))]/4, -1/4120, PrecisionGoal->100, WorkingPrecision->240][[2]]][[1]]
  • PARI
    real(polroots(1323*d^12 + 9711*d^11 + 32535*d^10 + 67005*d^9 + 94338*d^8 + 94761*d^7 + 68955*d^6 + 36367*d^5 + 13740*d^4 + 3619*d^3 + 630*d^2 + 65*d + 3)[4]) \\ Charles R Greathouse IV, Nov 11 2011
    
  • PARI
    polrootsreal(1323*x^12 - 9711*x^11 + 32535*x^10 - 67005*x^9 + 94338*x^8 - 94761*x^7 + 68955*x^6 - 36367*x^5 + 13740*x^4 - 3619*x^3 + 630*x^2 - 65*x + 3)[1] \\ Charles R Greathouse IV, Oct 27 2023

Formula

d is the largest real root of the equation 1323d^12 + 9711d^11 + 32535d^10 + 67005d^9 + 94338d^8 + 94761d^7 + 68955d^6 + 36367d^5 + 13740d^4 + 3619d^3 + 630d^2 + 65d + 3 = 0.

A318614 Scaled g.f. S(u) = Sum_{n>0} a(n)*16*(u/16)^n satisfies T(u) = d/du S(u), with T(u) as defined by A318417; sequence gives a(n).

Original entry on oeis.org

1, 6, 76, 1260, 24276, 515592, 11721072, 280020312, 6945369860, 177358000248, 4635276570288, 123449340098448, 3339525750984528, 91535631253610400, 2537277723600799680, 71015600640006437040, 2004523477053308685540, 57003431104378084982040
Offset: 1

Views

Author

Bradley Klee, Aug 30 2018

Keywords

Comments

Area interior to the central loop of u = 2*H = x^2 + y^2 - (1/2)*(x^4 + y^4) equals to Pi*S(u), when u in [0,1/2].

Examples

			Singular Value: S(1/2) = 1/sqrt(2).
N=4, h=1/sqrt(2) Quantization: S(u) = (n+1/2)*h/N.
  n  |                  u
==================================================
  0  |  0.08544689553344134756293807606337...
  1  |  0.23840989875904155311088418238272...
  2  |  0.36638282702449450473835851051425...
  3  |  0.46595506694324457665483887176081...
		

References

  • E. Heller, The Semiclassical Way to Dynamics and Spectroscopy, Princeton University Press, 2018, page 204.

Crossrefs

Programs

  • GAP
    a:=[1,6];; for n in [3..20] do a[n]:=(1/(n*(n-1)^2))*(12*(n-1)*(2*n-3)^2*a[n-1]-(128*(n-2)*(2*n-5)*(2*n-3)*a[n-2])); od; a; # Muniru A Asiru, Sep 24 2018
  • Mathematica
    RecurrenceTable[{(n-1)^2*n*a[n] - 12*(n-1)*(2*n-3)^2*a[n-1] + 128*(n-2)*(2*n-5)*(2*n-3)*a[n-2] == 0, a[1] == 1, a[2] == 6}, a, {n, 1, 1000}]

Formula

(n-1)^2*n*a(n) - 12*(n-1)*(2*n-3)^2*a(n-1) + 128*(n-2)*(2*n-5)*(2*n-3)*a(n-2) == 0.
a(n) = A000108(n-1)*A098410(n-1).

A322505 Factorial expansion of 1/sqrt(2) = Sum_{n>=1} a(n)/n!.

Original entry on oeis.org

0, 1, 1, 0, 4, 5, 0, 6, 4, 9, 0, 11, 7, 3, 11, 10, 2, 2, 5, 16, 11, 3, 7, 18, 16, 19, 11, 12, 21, 19, 22, 5, 31, 21, 25, 30, 20, 6, 5, 21, 17, 41, 36, 14, 28, 13, 45, 16, 0, 33, 1, 2, 41, 1, 28, 43, 9, 15, 16, 28, 22, 19, 22, 13, 34, 61, 38, 40, 56, 44, 69, 25, 42, 44, 34, 73, 71, 42, 17
Offset: 1

Views

Author

G. C. Greubel, Dec 12 2018

Keywords

Examples

			1/sqrt(2) = 0 + 1/2! + 1/3! + 0/4! + 4/5! + 5/6! + 0/7! + 6/8! + ...
		

Crossrefs

Cf. A010503 (decimal expansion), A130130 (continued fraction).
Cf. A009949 (sqrt(2)).

Programs

  • Magma
    SetDefaultRealField(RealField(250));  [Floor(1/Sqrt(2))] cat [Floor(Factorial(n)/Sqrt(2)) - n*Floor(Factorial((n-1))/Sqrt(2)) : n in [2..80]];
    
  • Mathematica
    With[{b = 1/Sqrt[2]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Dec 12 2018 *)
  • PARI
    default(realprecision, 250); b = 1/sqrt(2); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", "))
    
  • Sage
    b=1/sqrt(2);
    def a(n):
        if (n==1): return floor(b)
        else: return expand(floor(factorial(n)*b) -n*floor(factorial(n-1)*b))
    [a(n) for n in (1..80)]

A351898 Decimal expansion of metallic ratio for N = 14.

Original entry on oeis.org

1, 4, 0, 7, 1, 0, 6, 7, 8, 1, 1, 8, 6, 5, 4, 7, 5, 2, 4, 4, 0, 0, 8, 4, 4, 3, 6, 2, 1, 0, 4, 8, 4, 9, 0, 3, 9, 2, 8, 4, 8, 3, 5, 9, 3, 7, 6, 8, 8, 4, 7, 4, 0, 3, 6, 5, 8, 8, 3, 3, 9, 8, 6, 8, 9, 9, 5, 3, 6, 6, 2, 3, 9, 2, 3, 1, 0, 5, 3, 5, 1, 9, 4, 2, 5, 1, 9
Offset: 2

Views

Author

A.H.M. Smeets, Feb 24 2022

Keywords

Comments

Decimal expansion of continued fraction [14; 14, 14, 14, ...].
Also largest solution of x^2 - 14 x - 1 = 0.
Essentially the same digit sequence as A010503, A157214, A174968 and A268683.
The metallic ratio's for N = A077444(n) are equal to powers of the silver ratio, i.e., A014166^(2n-1); this constant represents the special case for N = A077444(2).

Examples

			14.0710678118654752440084436210484903928483593...
		

Crossrefs

Metallic ratios: A001622 (N=1), A014176 (N=2), A098316 (N=3), A098317 (N=4), A098318 (N=5), A176398 (N=6), A176439 (N=7), A176458 (N=8), A176522 (N=9), A176537 (N=10), A244593 (N=11).

Programs

  • Mathematica
    RealDigits[7 + 5*Sqrt[2], 10, 100][[1]] (* Amiram Eldar, Feb 24 2022 *)
  • PARI
    (1+sqrt(2))^3

Formula

Equals 2 + 5*A014176.
Equals A014176^3.
Equals exp(arcsinh(7)). - Amiram Eldar, Jul 04 2023

A358614 Decimal expansion of 9*sqrt(2)/32.

Original entry on oeis.org

3, 9, 7, 7, 4, 7, 5, 6, 4, 4, 1, 7, 4, 3, 2, 9, 8, 2, 4, 7, 5, 4, 7, 4, 9, 5, 3, 6, 8, 3, 9, 7, 7, 5, 8, 4, 5, 9, 7, 7, 2, 0, 2, 1, 4, 9, 4, 9, 7, 6, 6, 6, 4, 5, 5, 8, 0, 9, 4, 1, 1, 7, 6, 3, 0, 9, 8, 9, 3, 5, 0, 9, 5, 6, 7, 4, 6, 7, 6, 0, 4, 6, 7, 6, 6, 7, 1, 4, 9, 4, 0, 2, 9, 6, 4, 9, 1, 9, 2
Offset: 0

Views

Author

Bernard Schott, Dec 05 2022

Keywords

Comments

Smallest constant M such that the inequality
|a*b*(a^2 - b^2) + b*c*(b^2 - c^2) + c*a*(c^2 - a^2)| <= M * (a^2 + b^2 + c^2)^2
holds for all real numbers a, b, c.
Equality stands for any triple (a, b, c) proportional to (1 - 3*sqrt(2)/2, 1, 1 + 3*sqrt(2)/2), up to permutation.
This constant is the answer to the 3rd problem, proposed by Ireland during the 47th International Mathematical Olympiad in 2006 at Ljubljana, Slovenia (see links).
Equivalently |(a - b)(b - c)(c - a)(a + b + c)| / (a^2 + b^2 + c^2)^2 <= M with (a,b,c) != (0,0,0).

Examples

			0.3977475644174329824...
		

Crossrefs

Programs

  • Maple
    evalf(9*sqrt(2)/32), 100);
  • Mathematica
    RealDigits[9*Sqrt[2]/32, 10, 120][[1]] (* Amiram Eldar, Dec 05 2022 *)

Formula

Equals (3/16) * A230981 = (3/32) * A010474 = (9/32) * A002193 = (9/16) * A010503.

A373642 Decimal expansion of Sum_{k>=1} (sin(Pi/k))^(2k).

Original entry on oeis.org

1, 4, 8, 9, 5, 5, 0, 2, 4, 8, 8, 1, 3, 8, 2, 6, 4, 6, 8, 5, 8, 4, 1, 1, 5, 2, 4, 4, 5, 2, 8, 9, 4, 3, 6, 2, 5, 3, 9, 3, 7, 1, 5, 6, 0, 7, 5, 1, 5, 8, 6, 9, 8, 3, 2, 2, 7, 1, 3, 2, 6, 8, 5, 7, 9, 1, 2, 6, 9, 5, 7, 4, 5, 8, 1, 6, 8, 2, 0, 6, 7, 7, 0, 9, 6, 4, 8, 5, 3, 9, 1, 9, 4
Offset: 1

Views

Author

R. J. Mathar, Jun 12 2024

Keywords

Examples

			0^2 + 1^4 + (0.86602...)^6 + (0.70710..)^8 + (0.58778..)^10 + ... = 1.4895502488138264685841...
		

Crossrefs

Cf. A269611, A010527 (sin Pi/3), A010503 (sin Pi/4), A019845 (sin Pi/5).

Programs

  • PARI
    sumpos(k = 1, sin(Pi/k)^(2*k)) \\ Amiram Eldar, Aug 20 2024
Previous Showing 71-80 of 81 results. Next