cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A114709 Triangle read by rows: T(n,k) is the number of hill-free Schroeder paths of length 2n that have k horizontal steps on the x-axis (0<=k<=n). A Schroeder path of length 2n is a lattice path from (0,0) to (2n,0) consisting of U=(1,1), D=(1,-1) and H=(2,0) steps and never going below the x-axis. A hill is a peak at height 1.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 6, 4, 0, 1, 26, 12, 6, 0, 1, 114, 56, 18, 8, 0, 1, 526, 252, 90, 24, 10, 0, 1, 2502, 1192, 414, 128, 30, 12, 0, 1, 12194, 5772, 2006, 600, 170, 36, 14, 0, 1, 60570, 28536, 9882, 2976, 810, 216, 42, 16, 0, 1, 305526, 143388, 49554, 14904, 4110, 1044
Offset: 0

Views

Author

Emeric Deutsch, Dec 26 2005

Keywords

Comments

Row sums are the little Schroeder numbers (A001003). Column 0 is A114710. Sum_{k=0..n} k*T(n,k) = A010683(n-1).
Riordan array ((1+3*x-sqrt(1-6*x+x^2))/(2*x*(2*x+3)),(1+3*x-sqrt(1-6*x+x^2))/(2*(2*x+3))), inverse of the Riordan array ((1-3*x)/((1-x)*(1-2*x)), x*(1-3*x)/((1-x)*(1-2*x))). - Paul Barry, Mar 01 2011

Examples

			T(4,2)=6 because we have (HH)UHD,(HH)UUDD,(H)UHD(H),(H)UUDD(H),UHD(HH) and UUDD(HH), where U=(1,1), D=(1,-1) and H=(2,0) (the H's on the x-axis are shown between parentheses).
Triangle starts:
  1;
  0,1;
  2,0,1;
  6,4,0,1;
  26,12,6,0,1;
Production matrix is
  0, 1,
  2, 0, 1,
  6, 2, 0, 1,
  18, 6, 2, 0, 1,
  54, 18, 6, 2, 0, 1,
  162, 54, 18, 6, 2, 0, 1,
  486, 162, 54, 18, 6, 2, 0, 1,
  1458, 486, 162, 54, 18, 6, 2, 0, 1
where the columns have generator (1-x)*(1-2*x)/(1-3*x).
		

Crossrefs

Programs

  • Maple
    R:=(1-z-sqrt(1-6*z+z^2))/2/z: G:=1/(1+z-t*z-z*R): Gser:=simplify(series(G,z=0,14)): P[0]:=1: for n from 1 to 10 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 10 do seq(coeff(t*P[n],t^j),j=1..n+1) od; # yields sequence in triangular form
  • Mathematica
    Table[Sum[(i + 1) Binomial[k + i + 1, k] Sum[(-1)^(j + i)*2^(n - k - j - i)* Binomial[n + 1, j] Binomial[2 n - k - j - i, n], {j, 0, n - k - i}], {i, 0, n - k}]/(n + 1), {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Oct 30 2019 *)
  • Maxima
    T(n,k):=sum((i+1)*binomial(k+i+1,k)*sum((-1)^(j+i)*2^(n-k-j-i)*binomial(n+1,j)*binomial(2*n-k-j-i,n),j,0,n-k-i),i,0,n-k)/(n+1); /* Vladimir Kruchinin, Feb 29 2016 */

Formula

G.f.: 1/(1+z-t*z-z*R), where R=(1-z-sqrt(1-6*z+z^2))/(2*z) is the g.f. of the large Schroeder numbers (A006318).
T(n,k) = Sum_{i=0..n-k}((i+1)*binomial(k+i+1,k)*Sum_{j=0..n-k-i}((-1)^(j+i)*2^(n-k-j-i)*binomial(n+1,j)*binomial(2*n-k-j-i,n)))/(n+1). - Vladimir Kruchinin, Feb 29 2016

A378668 G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)^2/(1 - x*A(x)^2) )^2.

Original entry on oeis.org

1, 2, 13, 112, 1104, 11778, 132374, 1543740, 18505996, 226632616, 2823110349, 35659080952, 455652487060, 5879489288828, 76502741016012, 1002670573618324, 13224761472453756, 175404372357915096, 2338003752387818372, 31302169754776944512, 420760252068869028028
Offset: 0

Views

Author

Seiichi Manyama, Dec 02 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2*sum(k=0, n, 2^k*(-1)^(n-k)*binomial(n, k)*binomial(4*n+k+2, n)/(4*n+k+2));
    
  • PARI
    a(n, r=2, s=1, t=5, u=4) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

G.f.: exp( 1/2 * Sum_{k>=1} A378613(k) * x^k/k ).
G.f.: B(x)^2 where B(x) is the g.f. of A243667.
a(n) = 2 * Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(n,k) * binomial(4*n+k+2,n)/(4*n+k+2).
a(n) = 2 * Sum_{k=0..n} binomial(4*n+k+2,k) * binomial(n-1,n-k)/(4*n+k+2).
G.f. A(x) satisfies A(x) = ( 1 + x*A(x)^(5/2)/(1 - x*A(x)^2) )^2.

A261207 Expansion of (x-1)/8 - (x^2-4*x-1)/(8*sqrt(x^2-6*x+1)).

Original entry on oeis.org

0, 1, 3, 14, 70, 363, 1925, 10364, 56412, 309605, 1710247, 9496746, 52960674, 296408847, 1663998345, 9365980152, 52837614456, 298676661129, 1691325089867, 9592607927750, 54482777049918, 309837754937843, 1764046900535053, 10054065679046004, 57357471874390100
Offset: 0

Views

Author

Vladimir Kruchinin, Aug 11 2015

Keywords

Comments

Number of vertices in all Schroeder trees with n leaves. See Theorem 2.1 of Van Duzer. - Michel Marcus, Apr 12 2019

Crossrefs

Cf. A010683.

Programs

  • Maple
    a := n -> simplify((-1)^(n+1)*(n*(n+1)/2)*hypergeom([1-n, 1+n], [3], 2));
    seq(a(n),n=0..27); # Peter Luschny, Aug 12 2015
  • Mathematica
    CoefficientList[Series[(x - 1) / 8 - (x^2 - 4 x - 1) / (8 Sqrt[x^2 - 6 x + 1]), {x, 0, 33}], x] (* Vincenzo Librandi, Aug 12 2015 *)
  • Maxima
    a(n):=sum(2^i*(-1)^(n-i-1)*binomial(n+1,n-i-1)*binomial(n+i,n),i,0,n-1);
    
  • PARI
    vector(30, n, n--; sum(i=0,n-1,2^i*(-1)^(n-i-1)*binomial(n+1,n-i-1)*binomial(n+i,n))) \\ Michel Marcus, Aug 12 2015

Formula

a(n) = Sum_{i=0..n-1}(2^i*(-1)^(n-i-1)*C(n+1,n-i-1)*C(n+i,n)).
a(n) = (-1)^(n+1)*(n*(n+1)/2)*hypergeom([1-n, 1+n], [3], 2). - Peter Luschny, Aug 12 2015
a(n) = A010683(n-1)*(n+1)/2. - Peter Luschny, Aug 12 2015
a(n) ~ (3+2*sqrt(2))^n / (2^(9/4)*sqrt(Pi*n)). - Vaclav Kotesovec, Aug 17 2015
D-finite with recurrence: n*a(n) +(-2*n-5)*a(n-1) +3*(-8*n+21)*a(n-2) +(10*n-39)*a(n-3) +(-n+5)*a(n-4)=0. - R. J. Mathar, Jan 25 2020

A378670 G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)^(3/2)/(1 - x*A(x)^(3/2)) )^2.

Original entry on oeis.org

1, 2, 11, 78, 627, 5432, 49464, 466726, 4522871, 44747874, 450127999, 4589821576, 47333631828, 492836382192, 5173697858508, 54700317431958, 581946708333055, 6225343630256678, 66921440314606905, 722546760572660030, 7832054418695360555, 85198490262065775840
Offset: 0

Views

Author

Seiichi Manyama, Dec 02 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2*sum(k=0, n, 2^k*(-1)^(n-k)*binomial(n, k)*binomial(3*n+k+2, n)/(3*n+k+2));
    
  • PARI
    a(n, r=2, s=1, t=4, u=3) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

G.f.: exp( 2/3 * Sum_{k>=1} A378612(k) * x^k/k ).
G.f.: B(x)^2 where B(x) is the g.f. of A243659.
a(n) = 2 * Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(n,k) * binomial(3*n+k+2,n)/(3*n+k+2).
a(n) = 2 * Sum_{k=0..n} binomial(3*n+k+2,k) * binomial(n-1,n-k)/(3*n+k+2).
G.f. A(x) satisfies A(x) = ( 1 + x*A(x)^2/(1 - x*A(x)^(3/2)) )^2.
Previous Showing 11-14 of 14 results.