cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A050158 T(n, k) = S(2*n + 1, n, k + 1) for 0<=k<=n and n >= 0, array S as in A050157.

Original entry on oeis.org

1, 2, 3, 5, 9, 10, 14, 28, 34, 35, 42, 90, 117, 125, 126, 132, 297, 407, 451, 461, 462, 429, 1001, 1430, 1638, 1703, 1715, 1716, 1430, 3432, 5070, 5980, 6330, 6420, 6434, 6435, 4862, 11934, 18122, 21930, 23630, 24174, 24293
Offset: 0

Views

Author

Keywords

Examples

			Triangle starts:
                               1
                              2, 3
                            5, 9, 10
                         14, 28, 34, 35
                     42, 90, 117, 125, 126
                  132, 297, 407, 451, 461, 462
            429, 1001, 1430, 1638, 1703, 1715, 1716
		

Crossrefs

T(n, 0) = A000108(n+1).
T(n, 1) = A000245(n+1).
T(n, n) = A001700(n).
T(n,n-1) = A010763(n).
Row sums are A296770.

Programs

  • Maple
    A050158 := (n, k) ->  binomial(2*n+1, n+1) - binomial(2*n+1, n-k-1):
    seq(seq(A050158(n,k), k=0..n), n=0..6); # Peter Luschny, Dec 22 2017

Formula

T(n, k) = Sum_{0<=j<=k} t(n, j), array t as in A039598.
T(n, k) = binomial(2*n+1, n+1) - binomial(2*n+1, n-k-1). Peter Luschny, Dec 22 2017

A350653 a(n) is the number of weak compositions of n into n-1 parts in which at least one part is zero.

Original entry on oeis.org

0, 2, 12, 52, 205, 786, 2996, 11432, 43749, 167950, 646635, 2496132, 9657687, 37442146, 145422660, 565722704, 2203961413, 8597496582, 33578000591, 131282408380, 513791607399, 2012616400058, 7890371113927, 30957699535752, 121548660036275
Offset: 2

Views

Author

Enrique Navarrete, Jan 09 2022

Keywords

Examples

			a(5)=52 since 5 can be written as 5+0+0+0 (4 such compositions); 4+1+0+0 (12 such compositions); 3+2+0+0 (12 such compositions); 3+1+1+0 (12 such compositions); 2+2+1+0 (12 such compositions). All these weak compositions contain at least one zero.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Binomial[2*n - 2, n] - n + 1; Array[a, 25, 2] (* Amiram Eldar, Jan 10 2022 *)

Formula

a(n) = binomial(2*n-2,n) - (n-1) = A001791(n-1) -n+1.
G.f.: 4*x^2/((1 - sqrt(1 - 4*x))^2*sqrt(1 - 4*x)) - (1 - 2*x + 2*x^2)/(1 - x)^2. - Stefano Spezia, Jan 10 2022
D-finite with recurrence +n*(11*n-38)*a(n) -(n-1)*(73*n-244)*a(n-1) +2*(67*n^2-364*n+492)*a(n-2) -4*(9*n-22)*(2*n-7)*a(n-3)=0. - R. J. Mathar, Mar 06 2022

A375178 a(n) = Sum_{k = 0..n-1} binomial(n+k-1, k)^3 (same as A112028 with an extra 0 at the start).

Original entry on oeis.org

0, 1, 9, 244, 9065, 389376, 18188478, 897376152, 46011772521, 2427553965160, 130930630643384, 7186614533569296, 400132290102421214, 22543708920891189136, 1282873288801683197250, 73628947696550668509744, 4257138240245923453355625, 247733479854085081062353400, 14498252738780732999484606360
Offset: 0

Views

Author

Peter Bala, Aug 03 2024

Keywords

Comments

Compare with the identity Sum_{k = 0..n-1} binomial(n+k-1, k) = (1/2) * binomial(2*n, n) = (1/2) * A000984(n) for n >= 1.
The central binomial coefficients satisfy the supercongruence (1/2) * binomial(2*p, p) == 1 (mod p^3) for all primes p >= 5 (Wolstenholme's theorem).
For prime p, binomial(p+k-1, k) == 0 (mod p) for 1 <= k <= p-1. It follows that a(p) == 1 (mod p^3) for all primes p. We conjecture that, in fact, the stronger congruence a(p) == 1 (mod p^5) holds for all primes p >= 7.
Further, we conjecture that for r >= 2 and prime p >= 5, a(p^r) == a(p^(r-1)) (mod p^(3*r+3)).
More generally, for a positive integer m, define a sequence {b_m(n) : n >= 0} by setting b_m(n) = Sum_{k = 0..n-1} binomial(n+k-1, k)^(2*m+1). Then the congruence b_m(p) == 1 (mod p^(2*m+1)) clearly holds for all primes p. We conjecture that the stronger supercongruence b_m(p) == 1 (mod p^(2*m+3)) holds for all primes p >= 2*m + 5, and for r >= 2, the supercongruence b_m(p^r) == b_m(p^(r-1)) (mod p^(3*r+2*m+1)) also holds for all primes p >= 2*m + 5.
Essentially a duplicate of A112028.

Examples

			Examples of supercongruences:
a(7) - a(1) = 897376152 - 1 = (7^5)*107*499 == 0 (mod 7^5)
a(11) - a(1) = 7186614533569296 - 1 = 5*(11^5)*8924644409 == 0 (mod 11^5).
		

Crossrefs

Programs

  • Maple
    seq(add( binomial(n+k-1, k)^3, k = 0..n-1), n = 0..20);

Formula

a(n) = Sum_{k = 0..n-1} (-1)^k * binomial(-n, k)^3.
a(n) ~ 2^(6*n-3)/(7*Pi^(3/2)*n^(3/2)). - Vaclav Kotesovec, Aug 03 2024

A371003 a(n) = binomial(2*n-1,n) - binomial(n,2)*(binomial(n-1,2) + 2) - 1.

Original entry on oeis.org

0, 0, 0, 4, 45, 281, 1358, 5790, 23229, 90667, 350130, 1348315, 5194995, 20051019, 77548994, 300527354, 1166786517, 4537546535, 17672605394, 68923231539, 269128896899, 1052049432887, 4116715304850, 16123801771169, 63205303135475, 247959266375901, 973469712709278
Offset: 1

Views

Author

Enrique Navarrete, Mar 07 2024

Keywords

Comments

a(n) is the number of ways to place n indistinguishable balls into n distinguishable boxes with at least 3 boxes remaining empty.
a(n) is also the number of weak compositions of n into n parts in which at least three parts are zero.

Examples

			a(5)=45 since 5 can be written as 5+0+0+0+0, 0+5+0+0+0, etc. (5 such compositions); 4+1+0+0+0 (20 such compositions); 3+2+0+0+0 (20 such compositions).
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[2n-1,n]-Binomial[n,2]*(Binomial[n-1,2]+2)-1,{n,27}] (* James C. McMahon, Mar 08 2024 *)
  • Python
    from math import comb
    def A371003(n): return comb((n<<1)-1,n)-n-((m:=(n-1)**2)*(m+3)>>2) # Chai Wah Wu, Mar 29 2024

A375555 Triangle read by rows: T(n, k) = abs(A181937(k, n)), where A181937 are the André numbers, for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 3, 1, 1, 1, 16, 9, 4, 1, 1, 1, 61, 19, 14, 5, 1, 1, 1, 272, 99, 34, 20, 6, 1, 1, 1, 1385, 477, 69, 55, 27, 7, 1, 1, 1, 7936, 1513, 496, 125, 83, 35, 8, 1, 1, 1, 50521, 11259, 2896, 251, 209, 119, 44, 9, 1
Offset: 0

Views

Author

Peter Luschny, Aug 19 2024

Keywords

Comments

See A181937 for comments and references.

Examples

			Triangle starts:
  [0]  1;
  [1]  1, 1;
  [2]  1, 1,    1;
  [3]  1, 1,    2,    1;
  [4]  1, 1,    5,    3,   1;
  [5]  1, 1,   16,    9,   4,   1;
  [6]  1, 1,   61,   19,  14,   5,  1;
  [7]  1, 1,  272,   99,  34,  20,  6,  1;
  [8]  1, 1, 1385,  477,  69,  55, 27,  7, 1;
  [9]  1, 1, 7936, 1513, 496, 125, 83, 35, 8, 1;
.
Seen as an array:
  [0]  1, 1,      1,      1,      1,      1,      1,      1, ...
  [1]  1, 1,      2,      3,      4,      5,      6,      7, ...
  [2]  1, 1,      5,      9,     14,     20,     27,     35, ...
  [3]  1, 1,     16,     19,     34,     55,     83,    119, ...
  [4]  1, 1,     61,     99,     69,    125,    209,    329, ...
  [5]  1, 1,    272,    477,    496,    251,    461,    791, ...
  [6]  1, 1,   1385,   1513,   2896,   2300,    923,   1715, ...
  [7]  1, 1,   7936,  11259,  11056,  15775,  10284,   3431, ...
		

Crossrefs

Cf. A181937, A375554 (row sums), A030662 (central terms, main diagonal of array), A010763 (central terms of the (1, 1)-based variant).

Programs

  • Maple
    Andre := proc(n, k) option remember; local j;
      ifelse(k = 0, 1, ifelse(n = 0, 1,
      -add(binomial(k, j) * Andre(n, j), j = 0..k-1, n))) end:
    T := (n, k) -> abs(Andre(k, n)): seq(seq(T(n, k), k = 0..n), n = 0..10);
  • Mathematica
    Andre[n_, k_] := Andre[n, k] = If[k <= 0, 1, If[n == 0, 1, -Sum[Binomial[k, j] Andre[n, j], {j, 0, k-1, n}]]];
    (* Seen as an array: *)
    A[n_, k_] := Abs[Andre[k, n + k]];
    Table[A[n, k], {n, 0, 9}, {k, 0, 7}] // MatrixForm

A352405 a(n) = binomial(n,2)*(binomial(n-1,2) + 2).

Original entry on oeis.org

0, 2, 9, 30, 80, 180, 357, 644, 1080, 1710, 2585, 3762, 5304, 7280, 9765, 12840, 16592, 21114, 26505, 32870, 40320, 48972, 58949, 70380, 83400, 98150, 114777, 133434, 154280, 177480, 203205, 231632, 262944, 297330, 334985, 376110, 420912, 469604, 522405, 579540, 641240, 707742, 779289, 856130
Offset: 1

Views

Author

Enrique Navarrete, Mar 14 2022

Keywords

Comments

a(n) is the number of ways to place n indistinguishable balls into n distinguishable boxes with either 1 or 2 boxes remaining empty.
a(n) is also the number of weak compositions of n into n parts that contain either one or two 0's.
a(n)+1 is the number of ways to place n indistinguishable balls into n distinguishable boxes with at most 2 boxes remaining empty (just add the case of no empty boxes in which we place exactly one ball in one box).

Examples

			a(4)=30 since 4 can be written as 3+1+0+0, 0+3+0+1, etc. (12 such compositions); 2+2+0+0 (6 such compositions); 2+1+1+0 (12 such compositions).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Binomial[n, 2] * (Binomial[n - 1, 2] + 2); Array[a, 50] (* Amiram Eldar, Mar 15 2022 *)

Formula

G.f.: x^2*(2 - x + 5*x^2)/(1 - x)^5. - Stefano Spezia, Mar 15 2022

A370197 a(n) is the number of ways to place n indistinguishable balls into n distinguishable boxes with at least 4 boxes remaining empty.

Original entry on oeis.org

0, 0, 0, 0, 5, 81, 658, 3830, 18525, 80587, 330330, 1312015, 5132075, 19946915, 77383374, 300272554, 1166405717, 4536991655, 17671814690, 68922126879, 269127380699, 1052047384687, 4116712577510, 16123798186665, 63205298480275, 247959260395901, 973469705104278
Offset: 1

Views

Author

Enrique Navarrete, Mar 09 2024

Keywords

Comments

a(n) is also the number of weak compositions of n into n parts in which at least four parts are zero.

Examples

			a(6)=81 since 6 can be written as 6+0+0+0+0+0, 0+6+0+0+0+0, etc. (6 such compositions); 5+1+0+0+0+0 (30 such compositions); 4+2+0+0+0+0 (30 such compositions); 3+3+0+0+0+0 (15 such compositions).
		

Crossrefs

Formula

a(n) = binomial(2*n-1,n) - binomial(n,2)*binomial(n-1,2) - binomial(n,3)*binomial(n-1,3) - n*(n-1) - 1.

A371036 a(n) is the number of ways to place n indistinguishable balls into n distinguishable boxes with at least one box remaining empty and not all balls placed in a single box.

Original entry on oeis.org

0, 0, 6, 30, 120, 455, 1708, 6426, 24300, 92367, 352704, 1352065, 5200286, 20058285, 77558744, 300540178, 1166803092, 4537567631, 17672631880, 68923264389, 269128937198, 1052049481837, 4116715363776, 16123801841525, 63205303218850, 247959266474025, 973469712824028
Offset: 1

Views

Author

Enrique Navarrete, Mar 08 2024

Keywords

Comments

a(n) is also the number of weak compositions of n into n parts in which at least one part is zero and the composition does not contain a single nonzero part.

Examples

			a(4)=30 since 4 can be written as 3+1+0+0, 0+3+1+0, etc. (12 such compositions); 2+2+0+0 (6 such compositions); 2+1+1+0 (12 such compositions).
		

Crossrefs

Formula

a(n) = binomial(2n-1,n)-n-1, n > 1; a(1)=0.
a(n) = A048775(n-1)-1, n > 1.
a(n) = A001700(n-1)-(n+1), n > 1.
Previous Showing 11-18 of 18 results.