cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 78 results. Next

A134979 Triangle read by rows: T(n,k) = number of partitions of n where the maximum number of objects in partitions of any given size is k.

Original entry on oeis.org

1, 0, 2, 0, 1, 2, 0, 1, 1, 3, 0, 0, 3, 2, 2, 0, 0, 2, 4, 1, 4, 0, 0, 1, 6, 3, 3, 2, 0, 0, 1, 6, 4, 6, 1, 4, 0, 0, 0, 6, 7, 8, 3, 3, 3, 0, 0, 0, 5, 7, 14, 4, 6, 2, 4, 0, 0, 0, 5, 7, 18, 7, 9, 5, 3, 2, 0, 0, 0, 3, 10, 22, 9, 14, 6, 6, 1, 6, 0, 0, 0, 2, 9, 26, 15, 19, 11, 9, 3, 5, 2
Offset: 1

Views

Author

Keywords

Comments

Every column is eventually 0; the last row with a nonzero value in column k is A024916(k). T(A024916(k)-i, k) <= P(i), where P is the partition function (A000041); equality holds for 0 <= i <= k. The partition represented by the last number in column k is row k of A010766.

Examples

			For the partition [3,2^2], there are 3 objects in the part of size 3 and 4 objects in the parts of size 2, so this partition is counted towards T(7,4).
Triangle T(n,k) begins:
  1;
  0, 2;
  0, 1, 2;
  0, 1, 1, 3;
  0, 0, 3, 2,  2;
  0, 0, 2, 4,  1,  4;
  0, 0, 1, 6,  3,  3, 2;
  0, 0, 1, 6,  4,  6, 1,  4;
  0, 0, 0, 6,  7,  8, 3,  3, 3;
  0, 0, 0, 5,  7, 14, 4,  6, 2, 4;
  0, 0, 0, 5,  7, 18, 7,  9, 5, 3, 2;
  0, 0, 0, 3, 10, 22, 9, 14, 6, 6, 1, 6;
  ...
		

Crossrefs

Cf. A008284, A091602, A000041 (row sums), A000005 (main diagonal), A032741 (2nd diagonal), A010766.
Column sums give A332233.

Programs

  • Maple
    b:= proc(n, i, m) option remember; `if`(n=0 or i=1, x^
          max(m, n), add(b(n-i*j, i-1, max(m, i*j)), j=0..n/i))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2, 0)):
    seq(T(n), n=1..20);  # Alois P. Heinz, Feb 07 2020
  • Mathematica
    b[n_, i_, m_] := b[n, i, m] = If[n == 0 || i == 1, x^Max[m, n], Sum[b[n - i j, i - 1, Max[m, i j]], {j, 0, n/i}]];
    T[n_] := Table[Coefficient[b[n, n, 0], x, i], {i, 1, n}];
    Array[T, 20] // Flatten (* Jean-François Alcover, Nov 10 2020, after Alois P. Heinz *)

A138808 Number of integer pairs (x,y), x > 0, y > 0, such that x <= p, y <= q for any factorization n = p*q.

Original entry on oeis.org

1, 3, 5, 8, 9, 14, 13, 20, 21, 26, 21, 35, 25, 38, 41, 48, 33, 57, 37, 64, 61, 62, 45, 84, 65, 74, 81, 96, 57, 109, 61, 112, 101, 98, 101, 138, 73, 110, 121, 151, 81, 160, 85, 160, 161, 134, 93, 196, 133, 185, 161, 192, 105, 216, 173, 223, 181, 170, 117, 258
Offset: 1

Views

Author

Jonas Wallgren, May 16 2008

Keywords

Comments

Conjecture: the row sums of the plane partitions A010766 are upper bounds. - R. J. Mathar, Aug 06 2008
a(n) is divisible by n iff n=1 or n belongs to A227993. - Rémy Sigrist, Mar 06 2017
a(n) >= 2*n - 1, with equality iff n is not composite. - Rémy Sigrist, Mar 12 2017

Examples

			a(8) = these 20 marked *'s:
-|12345678
-+--------
1|********
2|****
3|**
4|**
5|*
6|*
7|*
8|*
		

Crossrefs

Cf. A227993.

Programs

  • PARI
    a(n) = my(ar=0, pw=0); fordiv(n, w, ar=ar+(w-pw)*n/w; pw=w); return (ar) \\ Paul Tek, Mar 21 2015

Formula

a(n) = n*(m - Sum_{k=1..m-1} d(k)/d(k+1)), where d(1) < d(2) < ... < d(m) denote the divisors of n. - Rémy Sigrist, Mar 06 2017

Extensions

More terms from Paul Tek, Mar 21 2015
Typo in name corrected by Rémy Sigrist, Mar 05 2017

A278105 a(n) = floor(3/n).

Original entry on oeis.org

3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Jason Kimberley, Nov 23 2016

Keywords

Crossrefs

This sequence is (ignoring the trailing zeros) the third row of A010766.

Programs

  • Magma
    [3 div n: n in[1..100]];
  • Mathematica
    Table[Floor[3/n], {n, 105}] (* Michael De Vlieger, Nov 24 2016 *)

Formula

a(n) = A033322(n)+A154272(n). - R. J. Mathar, Jun 21 2025

A278111 Triangle T(n,k) = floor(2n^2/k) for 1 <= k <= 2n^2, read by rows.

Original entry on oeis.org

2, 1, 8, 4, 2, 2, 1, 1, 1, 1, 18, 9, 6, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 32, 16, 10, 8, 6, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 50, 25, 16, 12, 10, 8, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Jason Kimberley, Feb 08 2017

Keywords

Examples

			The first five rows are:
2, 1;
8, 4, 2, 2, 1, 1, 1, 1;
18, 9, 6, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1;
32, 16, 10, 8, 6, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
50, 25, 16, 12, 10, 8, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
		

Crossrefs

Cf. A277646.

Programs

Formula

T(n,k) = A010766(2n^2,k).

A348388 Irregular triangle read by rows: T(n, k) = floor((n-k)/k), for k = 1, 2, ..., floor(n/2) and n >= 2.

Original entry on oeis.org

1, 2, 3, 1, 4, 1, 5, 2, 1, 6, 2, 1, 7, 3, 1, 1, 8, 3, 2, 1, 9, 4, 2, 1, 1, 10, 4, 2, 1, 1, 11, 5, 3, 2, 1, 1, 12, 5, 3, 2, 1, 1, 13, 6, 3, 2, 1, 1, 1, 14, 6, 4, 2, 2, 1, 1, 15, 7, 4, 3, 2, 1, 1, 1, 16, 7, 4, 3, 2, 1, 1, 1, 17, 8, 5, 3, 2, 2, 1, 1, 1, 18, 8, 5, 3, 2, 2, 1, 1, 1, 19, 9, 5, 4, 3, 2, 1, 1, 1, 1
Offset: 2

Views

Author

Wolfdieter Lang, Oct 31 2021

Keywords

Comments

This irregular triangle T(n, k) gives the number of multiples of number k, larger than k and not exceeding n, for k = 1, 2, ..., floor(n/2), for n >= 2. See A348389 for the array of these multiples.
The length of row n is floor(n/2) = A004526(n), for n >= 2.
The row sums give A002541(n). See the formula given there by Wesley Ivan Hurt, May 08 2016.
The columns give the k-fold repeated positive integers k, for k >= 1.

Examples

			The irregular triangle T(n, k) begins:
n\k   1 2 3 4 5 6 7 8 9 10 ...
------------------------------
2:    1
3:    2
4:    3 1
5:    4 1
6:    5 2 1
7:    6 2 1
8:    7 3 1 1
9:    8 3 2 1
10:   9 4 2 1 1
11:  10 4 2 1 1
12:  11 5 3 2 1 1
13:  12 5 3 2 1 1
14:  13 6 3 2 1 1 1
15:  14 6 4 2 2 1 1
16:  15 7 4 3 2 1 1 1
17:  16 7 4 3 2 1 1 1
18:  17 8 5 3 2 2 1 1 1
19:  18 8 5 3 2 2 1 1 1
20:  19 9 5 4 3 2 1 1 1  1
...
		

Crossrefs

Columns k (with varying offsets): A000027, A004526, A008620, A008621, A002266, A097992, ...

Programs

  • Mathematica
    T[n_, k_] := Floor[(n - k)/k]; Table[T[n, k], {n, 2, 20}, {k, 1, Floor[n/2]}] // Flatten (* Amiram Eldar, Nov 02 2021 *)
  • Python
    def A348388row(n): return [(n - k) // k for k in range(1, 1 + n // 2)]
    for n in range(2, 21): print(A348388row(n))  # Peter Luschny, Nov 05 2021

Formula

T(n, k) = floor((n-k)/k), for k = 1, 2, ..., floor(n/2) and n >= 2.
G.f. of column k: G(k, x) = x^(2*k)/((1 - x)*(1 - x^k)).

A004199 Table of [ x/y ], where (x,y) = (1,1),(1,2),(2,1),(1,3),(2,2),(3,1),...

Original entry on oeis.org

1, 0, 2, 0, 1, 3, 0, 0, 1, 4, 0, 0, 1, 2, 5, 0, 0, 0, 1, 2, 6, 0, 0, 0, 1, 1, 3, 7, 0, 0, 0, 0, 1, 2, 3, 8, 0, 0, 0, 0, 1, 1, 2, 4, 9, 0, 0, 0, 0, 0, 1, 1, 2, 4, 10, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 11, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 12, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 3, 6, 13, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 6, 14
Offset: 1

Views

Author

Keywords

Comments

Entry in row n and column k is also the number of multiples of k less than or equal to n, n,k >= 1. - L. Edson Jeffery, Aug 31 2014

Examples

			Array begins:
  1, 0, 0, 0, 0, 0, 0, 0, ...
  2, 1, 0, 0, 0, 0, 0, 0, ...
  3, 1, 1, 0, 0, 0, 0, 0, ...
  4, 2, 1, 1, 0, 0, 0, 0, ...
  5, 2, 1, 1, 1, 0, 0, 0, ...
  ...
		

Crossrefs

Cf. A002541 (antidiagonal sums).
Cf. A010766 (same sequence as triangle, omitting the zeros), A010783.

Programs

  • Mathematica
    (* Array version: *)
    Grid[Table[Floor[n/k], {n, 14}, {k, 14}]] (* L. Edson Jeffery, Aug 31 2014 *)
    (* Array antidiagonals flattened: *)
    Flatten[Table[Floor[(n - k + 1)/k], {n, 14}, {k, n}]] (* L. Edson Jeffery, Aug 31 2014 *)

Formula

Sum_{k=1..n} a(n-k+1,k) = A002541(n+1).

A033325 a(n) = floor(5/n).

Original entry on oeis.org

5, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A010766.

Programs

A033326 a(n) = floor(6/n).

Original entry on oeis.org

6, 3, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A010766.

Programs

A033327 a(n) = floor(7/n).

Original entry on oeis.org

7, 3, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A010766.

Programs

A033328 a(n) = floor(8/n).

Original entry on oeis.org

8, 4, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A010766.

Programs

Previous Showing 61-70 of 78 results. Next