A302913
Determinant of n X n matrix whose main diagonal consists of the first n 9-gonal numbers and all other elements are 1's.
Original entry on oeis.org
1, 8, 184, 8280, 612720, 67399200, 10312077600, 2093351752800, 544271455728000, 176343951655872000, 69655860904069440000, 32947222207624845120000, 18384549991854663576960000, 11949957494705531325024000000, 8950518163534442962442976000000
Offset: 1
The matrix begins:
1 1 1 1 1 1 1 ...
1 9 1 1 1 1 1 ...
1 1 24 1 1 1 1 ...
1 1 1 46 1 1 1 ...
1 1 1 1 75 1 1 ...
1 1 1 1 1 111 1 ...
1 1 1 1 1 1 154 ...
Cf. Determinant of n X n matrix whose main diagonal consists of the first n k-gonal numbers and all other elements are 1's:
A000142 (k=2),
A067550 (k=3),
A010791 (k=4, with offset 1),
A302909 (k=5),
A302910 (k=6),
A302911 (k=7),
A302912 (k=8), this sequence (k=9),
A302914 (k=10).
-
d:=(i,j)->`if`(i<>j,1,i*(7*i-5)/2):
seq(LinearAlgebra[Determinant](Matrix(n,d)),n=1..16);
-
nmax = 20; Table[Det[Table[If[i == j, i*(7*i-5)/2, 1], {i, 1, k}, {j, 1, k}]], {k, 1, nmax}] (* Vaclav Kotesovec, Apr 16 2018 *)
RecurrenceTable[{a[n+1] == a[n] * n*(7*n + 9)/2, a[1] == 1}, a, {n, 1, 20}] (* Vaclav Kotesovec, Apr 16 2018 *)
Table[FullSimplify[7^(n + 1) * Gamma[n] * Gamma[n + 9/7] / (9*Gamma[2/7]*2^n)], {n, 1, 15}] (* Vaclav Kotesovec, Apr 16 2018 *)
-
a(n) = matdet(matrix(n, n, i, j, if (i!=j, 1, i*(7*i-5)/2))); \\ Michel Marcus, Apr 16 2018
A302914
Determinant of n X n matrix whose main diagonal consists of the first n 10-gonal numbers and all other elements are 1's.
Original entry on oeis.org
1, 9, 234, 11934, 1002456, 125307000, 21803418000, 5036589558000, 1490830509168000, 550116457882992000, 247552406047346400000, 133430746859519709600000, 84861955002654535305600000, 62882708656967010661449600000, 53701833193049827104877958400000
Offset: 1
The matrix begins:
1 1 1 1 1 1 1 ...
1 10 1 1 1 1 1 ...
1 1 27 1 1 1 1 ...
1 1 1 52 1 1 1 ...
1 1 1 1 85 1 1 ...
1 1 1 1 1 126 1 ...
1 1 1 1 1 1 175 ...
Cf. Determinant of n X n matrix whose main diagonal consists of the first n k-gonal numbers and all other elements are 1's:
A000142 (k=2),
A067550 (k=3),
A010791 (k=4, with offset 1),
A302909 (k=5),
A302910 (k=6),
A302911 (k=7),
A302912 (k=8),
A302913 (k=9), this sequence (k=10).
Cf.
A007840 (permanent instead of determinant, for k=2).
-
d:=(i,j)->`if`(i<>j,1,i*(4*i-3)):
seq(LinearAlgebra[Determinant](Matrix(n,d)),n=1..16);
-
nmax = 20; Table[Det[Table[If[i == j, i*(4*i-3), 1], {i, 1, k}, {j, 1, k}]], {k, 1, nmax}] (* Vaclav Kotesovec, Apr 16 2018 *)
RecurrenceTable[{a[n+1] == a[n] * n*(4*n + 5), a[1] == 1}, a, {n, 1, 20}] (* Vaclav Kotesovec, Apr 16 2018 *)
Table[FullSimplify[4^(n+1) * Gamma[n] * Gamma[n + 5/4] / (5*Gamma[1/4])], {n, 1, 15}] (* Vaclav Kotesovec, Apr 16 2018 *)
-
a(n) = matdet(matrix(n, n, i, j, if (i!=j, 1, i*(4*i-3)))); \\ Michel Marcus, Apr 16 2018
Original entry on oeis.org
7, 182, 11466, 1421784, 305683560, 104543777520, 53421870312720, 38891121587660160, 38852230466072499840, 51673466519876424787200, 89240076679826585607494400, 195971208388899181994057702400
Offset: 2
a(2) = 2^3-1 = 7.
a(3) = (2^3-1)*(3^3-1) = 7 * 26 = 182.
a(4) = (2^3-1)*(3^3-1)*(4^3-1) = 7 * 26 * 63 = 11466.
-
Rest[FoldList[Times,1,Range[2,15]^3-1]] (* Harvey P. Dale, Apr 18 2015 *)
-
a(n) = prod(k = 2, n, k^3 - 1); \\ Michel Marcus, Sep 29 2013
A303000
a(n) = permanent of the n X n matrix with entries a(i, i) = i^2 and a(i, j) = 1 elsewhere.
Original entry on oeis.org
1, 5, 52, 918, 24630, 934938, 47736048, 3157054776, 262661665176, 26857133054424, 3311299323349920, 484541686800059760, 83031688670103506160, 16472545369548670950480, 3746065113561656467249920, 968109978211279792380074880, 282158259444905145777416119680
Offset: 1
-
Table[Permanent[DiagonalMatrix[Table[i^2-1, {i, 1, n}]] + 1], {n, 1, 20}]
-
{a(n) = matpermanent(matrix(n, n, i, j, if(i==j, i^2, 1)))}
for(n=1, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Dec 20 2018
A303001
a(n) = permanent of the n X n matrix with entries a(i, i) = i*(i+1)/2 and a(i, j) = 1 elsewhere.
Original entry on oeis.org
1, 4, 30, 356, 6106, 142760, 4363848, 168986136, 8087082144, 468807362736, 32379640476000, 2627735592279600, 247610398718738640, 26815386224063189760, 3307855985755600598400, 461149884030679844958720, 72151124506962747825006720, 12590610689213961622942752000
Offset: 1
-
Table[Permanent[DiagonalMatrix[Table[i*(i+1)/2-1, {i, 1, n}]] + 1], {n, 1, 20}]
-
{a(n) = matpermanent(matrix(n, n, i, j, if(i==j, i*(i+1)/2, 1)))}
for(n=1, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Dec 20 2018
A064633
a(n) = 3^n*n!*(n+2)!/2!.
Original entry on oeis.org
1, 9, 216, 9720, 699840, 73483200, 10581580800, 1999918771200, 479980505088000, 142554210011136000, 51319515604008960000, 22016072194119843840000, 11096100385836401295360000, 6491218725714294757785600000, 4362098983680006077231923200000
Offset: 0
-
Table[3^n n! (n+2)!/2,{n,0,20}] (* Harvey P. Dale, Feb 25 2015 *)
-
{ for (n=0, 75, write("b064633.txt", n, " ", 3^n*n!*(n + 2)!/2) ) } \\ Harry J. Smith, Sep 20 2009
A319900
a(n) is the number of distinct ways to arrange n copies of each of the numbers 1 through n^2 inside a fixed n X n X n cube, provided that no number appears twice in the same left-right plane, front-back plane, or top-bottom plane.
Original entry on oeis.org
1, 24, 14515200, 7708721243457872461824000
Offset: 1
For n = 2, the top layer of the 2 X 2 X 2 cube must contain each of the numbers 1, 2, 3, 4. This can be arranged in 24 ways. Each way uniquely determines the rest of the cube, so there are 24 possible cubes.
Comments