cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A055801 Triangle T read by rows: T(i,0)=T(i,i)=1, T(i,j) = Sum_{k=1..floor(n/2)} T(i-2k, j-2k+1) for 1<=j<=i-1, where T(m,n) := 0 if m<0 or n<0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 3, 3, 1, 1, 1, 1, 2, 3, 4, 3, 1, 1, 1, 1, 2, 3, 5, 6, 4, 1, 1, 1, 1, 2, 3, 5, 7, 7, 4, 1, 1, 1, 1, 2, 3, 5, 8, 11, 10, 5, 1, 1, 1, 1, 2, 3, 5, 8, 12, 14, 11, 5, 1, 1, 1, 1, 2, 3, 5, 8, 13, 19, 21, 15, 6, 1
Offset: 0

Views

Author

Clark Kimberling, May 28 2000

Keywords

Comments

T(i+j,j) is the number of strings (s(1),...,s(m)) of nonnegative integers s(k) such that m<=i+1, s(m)=j and s(k)-s(k-1) is an odd positive integer for k=2,3,...,m.
T(i+j,j) is the number of compositions of numbers <=j using up to i parts, each an odd positive integer.

Examples

			Rows:
  1
  1  1
  1  1  1
  1  1  1  1
  1  1  1  2  1
  1  1  1  2  2  1
  1  1  1  2  3  3  1
  1  1  1  2  3  4  3  1
  1  1  1  2  3  5  6  4  1
  1  1  1  2  3  5  7  7  4  1
  1  1  1  2  3  5  8 11 10  5  1
  1  1  1  2  3  5  8 12 14 11  5  1
  1  1  1  2  3  5  8 13 19 21 15  6  1
  1  1  1  2  3  5  8 13 20 26 25 16  6  1
  1  1  1  2  3  5  8 13 21 32 40 36 21  7  1
  1  1  1  2  3  5  8 13 21 33 46 51 41 22  7  1
T(9,6) counts the strings 3456, 1236, 1256, 1456, 036, 016, 056.
T(9,6) counts the compositions 111, 113, 131, 311, 33, 15, 51.
		

Crossrefs

Infinitely many of the columns are (1, 1, 1, 2, 3, 5, 8, ..., Fibonacci numbers)
Essentially a reflected version of A011794.

Programs

  • GAP
    T:= function(n,k)
        if n<0 or k<0 then return 0;
        elif k=0 or k=n then return 1;
        else return Sum([1..Int(n/2)], j-> T(n-2*j, k-2*j+1));
        fi; end;
    Flat(List([0..15], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Jan 23 2020
  • Magma
    function T(n,k)
      if n lt 0 or k lt 0 then return 0;
      elif k eq 0 or k eq n then return 1;
      else return (&+[T(n-2*j, k-2*j+1): j in [1..Floor(n/2)]]);
      end if; return T; end function;
    [T(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jan 23 2020
    
  • Maple
    A055801 := proc(i,j) option remember;
        if j =0 or j = i then 1;
        elif i < 0 or j < 0 then 0;
        else add(procname(i-2*k,j-2*k+1),k=1..floor(i/2)) ;
        end if;
    end proc:
    seq(seq(A055801(n,k), k=0..n),n=0..20); # R. J. Mathar, Feb 11 2018
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<0 || k<0, 0, If[k==0 || k==n, 1, Sum[T[n-2*j, k-2*j+1 ], {j, Floor[n/2]}]]]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 23 2020 *)
  • PARI
    T(n,k) = if(n<0 || k<0, 0, if(k==0 || k==n, 1, sum(j=1, n\2, T(n-2*j, k-2*j+1))));
    for(n=0,15, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jan 23 2020
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (n<0 or k<0): return 0
        elif (k==0 or k==n): return 1
        else: return sum(T(n-2*j, k-2*j+1) for j in (1..floor(n/2)))
    [[T(n, k) for k in (0..n)] for n in (0..15)] # G. C. Greubel, Jan 23 2020
    

A054469 a(n) = a(n-1) + a(n-2) + (n+2)*binomial(n+3, 3)/2, with a(0) = 1, a(1) = 7.

Original entry on oeis.org

1, 7, 28, 85, 218, 499, 1053, 2092, 3970, 7272, 12958, 22596, 38739, 65535, 109714, 182185, 300620, 493635, 807555, 1317360, 2144396, 3485032, 5657028, 9174560, 14869613, 24088399, 39009168, 63156437, 102233030, 165466347, 267786673
Offset: 0

Views

Author

Barry E. Williams, Mar 31 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Right-hand column 11 of triangle A011794.

Programs

  • Magma
    A054469:= func< n | Fibonacci(n+12) -(1/12)*(1716 +802*n +173*n^2 +20*n^3 +n^4) >;
    [A054469(n): n in [0..40]]; // G. C. Greubel, Oct 21 2024
    
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==7,a[n]==a[n-1]+a[n-2]+(n+2) Binomial[ n+3,3]/2},a,{n,30}] (* Harvey P. Dale, Sep 22 2013 *)
    CoefficientList[Series[(1+x)/((1-x)^5*(1-x-x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 23 2013 *)
  • PARI
    a(n) = sum(i=1,(n+2)\2,binomial(n+5-i,n+2-2*i))+2*sum(i=1,(n+1)\2,binomial(n+5-i,n+1-2*i)) \\ Jason Yuen, Aug 13 2024
    
  • SageMath
    def A054469(n): return fibonacci(n+12) - (1716 + 802*n + 173*n^2 + 20*n^3 + n^4)//12
    [A054469(n) for n in range(41)] # G. C. Greubel, Oct 21 2024

Formula

a(n) = a(n-1) + a(n-2) + (n+1)*(n+2)^2*(n+3)/12.
a(-n) = 0.
a(n) = (Sum_{i=1..floor((n+2)/2)} binomial(n+5-i, n+2-2*i)) + 2*(Sum_{i=1..floor((n+1)/2)} binomial(n+5-i, n+1-2*i)).
G.f.: (1+x) / ((1-x)^5*(1-x-x^2)). - Colin Barker, Jun 11 2013
From G. C. Greubel, Oct 21 2024: (Start)
a(n) = Fibonacci(n+12) - Sum_{j=0..4} Fibonacci(11-2*j) * binomial(n+j, j).
a(n) = Fibonacci(n+12) - (1/12)*(1716 + 802*n + 173*n^2 + 20*n^3 + n^4). (End)

A053809 Second partial sums of A001891.

Original entry on oeis.org

1, 6, 21, 57, 133, 281, 554, 1039, 1878, 3302, 5686, 9638, 16143, 26796, 44179, 72471, 118435, 193015, 313920, 509805, 827036, 1340636, 2171996, 3517532, 5695053, 9218786, 14920769, 24147269, 39076593, 63233317, 102320326
Offset: 0

Views

Author

Barry E. Williams, Mar 27 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Right-hand column 9 of triangle A011794. Pairwise sums of A014166.

Programs

  • GAP
    List([0..40], n-> Fibonacci(n+10) - (2*n^3 + 27*n^2 + 145*n + 324)/6) # G. C. Greubel, Jul 06 2019
  • Magma
    [Fibonacci(n+10) - (2*n^3 + 27*n^2 + 145*n + 324)/6: n in [0..40]]; // G. C. Greubel, Jul 06 2019
    
  • Mathematica
    Table[Fibonacci[n+10] - (2*n^3+27*n^2+145*n+324)/6, {n,0,40}] (* G. C. Greubel, Jul 06 2019 *)
  • PARI
    vector(40, n, n--; fibonacci(n+10) - (2*n^3 + 27*n^2 + 145*n + 324)/6) \\ G. C. Greubel, Jul 06 2019
    
  • Sage
    [fibonacci(n+10) - (2*n^3 + 27*n^2 + 145*n + 324)/6 for n in (0..40)] # G. C. Greubel, Jul 06 2019
    

Formula

a(n) = a(n-1) + a(n-2) + (2*n+3)*C(n+2, 2)/3; a(-x)=0.
a(n) = Fibonacci(n+10) - (2*n^3 + 27*n^2 + 145*n + 324)/6.
G.f.: (1+x)/((1-x)^4*(1-x-x^2)).
a(n) = 5*a(n-1) - 9*a(n-2) + 6*a(n-3) + a(n-4) - 3*a(n-5) + a(n-6). - Wesley Ivan Hurt, Apr 21 2021

A054470 Partial sums of A054469.

Original entry on oeis.org

1, 8, 36, 121, 339, 838, 1891, 3983, 7953, 15225, 28183, 50779, 89518, 155053, 264767, 446952, 747572, 1241207, 2048762, 3366122, 5510518, 8995550, 14652578, 23827138, 38696751, 62785150, 101794318, 164950755, 267183785, 432650132
Offset: 0

Views

Author

Barry E. Williams, Mar 31 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Right-hand column 13 of triangle A011794.

Programs

  • Magma
    A054470:= func< n | Fibonacci(n+14) - (45120 +21458*n +4925*n^2 +680*n^3 +55*n^4 +2*n^5)/120 >;
    [A054470(n): n in [0..40]]; // G. C. Greubel, Oct 21 2024
    
  • Mathematica
    Accumulate[RecurrenceTable[{a[0]==1,a[1]==7,a[n]==a[n-1]+a[n-2]+(n+2) Binomial[n+3,3]/2},a,{n,40}]] (* Harvey P. Dale, Sep 22 2013 *)
    CoefficientList[Series[(1+x)/((1-x)^6*(1-x-x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 23 2013 *)
  • SageMath
    def A054470(n): return fibonacci(n+14) -(45120 +21458*n +4925*n^2 +680*n^3 +55*n^4 +2*n^5)//120
    [A054470(n) for n in range(41)] # G. C. Greubel, Oct 21 2024

Formula

a(n) = a(n-1) + a(n-2) + (2*n+5)*C(n+4, 4)/5, with a(-n) = 0.
a(n) = Sum_{j=1..[(n+2)/2]} binomial(n+6-j, n+2-2*j) + 2*Sum_{j=1..[(n+1)/2]} binomial(n+6-j, n+1-2*j), where [x]=greatest integer in x.
G.f.: (1+x) / ((1-x)^6*(1-x-x^2)). - Colin Barker, Jun 11 2013
From G. C. Greubel, Oct 21 2024: (Start)
a(n) = Fibonacci(n+14) - Sum_{j=0..5} Fibonacci(13-2*j)*binomial(n+j,j).
a(n) = Fibonacci(n+14) - (1/120)*(45120 + 21458*n + 4925*n^2 + 680*n^3 + 55*n^4 + 2*n^5). (End)
Previous Showing 11-14 of 14 results.