cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A022027 Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(2,16).

Original entry on oeis.org

2, 16, 127, 1008, 8000, 63492, 503904, 3999232, 31739888, 251903488, 1999230976, 15866888256, 125927492096, 999423012864, 7931916549888, 62951622430720, 499615287394304, 3965194632954880, 31469750573916160, 249759543441752064, 1982215569002196992, 15731845549721911296
Offset: 0

Views

Author

Keywords

Comments

Not to be confused with the Pisot T(2,16) sequence, which is A013730. - R. J. Mathar, Feb 13 2016

Crossrefs

Programs

  • Magma
    I:=[2,16]; [n le 2 select I[n] else Ceiling(Self(n-1)^2/Self(n-2))-1: n in [1..30]]; // Vincenzo Librandi, Feb 12 2016
  • Mathematica
    RecurrenceTable[{a[1] == 2, a[2] == 16, a[n] == Ceiling[a[n-1]^2 / a[n-2] - 1]}, a, {n, 30}] (* Vincenzo Librandi, Feb 12 2016 *)
  • PARI
    a=[2, 16]; for(n=2, 1000, a=concat(a, ceil(a[n]^2/a[n-1])-1)); A022027(n)=a[n+1] \\ M. F. Hasler, Feb 11 2016
    

Formula

Conjectures: a(n) = 8*a(n-1)-4*a(n-3). G.f.: -(x^2-2) / (4*x^3-8*x+1). - Colin Barker, Sep 18 2015
a(n+1) = ceiling(a(n)^2/a(n-1))-1 for n>0. - M. F. Hasler, Feb 11 2016

Extensions

Double-checked (original definition agrees with g.f. / recurrence for n=0..1000), extended and edited by M. F. Hasler, Feb 11 2016

A100628 a(n) = 2^(3*prime(n) + 1).

Original entry on oeis.org

128, 1024, 65536, 4194304, 17179869184, 1099511627776, 4503599627370496, 288230376151711744, 1180591620717411303424, 309485009821345068724781056, 19807040628566084398385987584, 5192296858534827628530496329220096
Offset: 1

Views

Author

Parthasarathy Nambi, Dec 02 2004

Keywords

Examples

			a(1) = 2^(3*2 + 1) = 128.
		

Crossrefs

Programs

Extensions

More terms from Stefan Steinerberger, Feb 28 2006

A267088 Perfect powers of the form x^3 + y^3 where x and y are positive integers.

Original entry on oeis.org

9, 16, 128, 243, 576, 1024, 6561, 8192, 9604, 11664, 28224, 36864, 51984, 65536, 97344, 140625, 177147, 250000, 275625, 345744, 419904, 450241, 524288, 614656, 717409, 746496, 1028196, 1058841, 1399489, 1500625, 1590121, 1750329, 1806336, 1882384, 2359296, 3326976, 4194304
Offset: 1

Views

Author

Altug Alkan, Jan 10 2016

Keywords

Comments

Intersection of A001597 and A003325.
Motivation for this sequence is the equation m^k = x^3 + y^3 where x,y,m > 0 and k >= 2.
Obviously, because of Fermat's Last Theorem, a(n) cannot be a cube.
A050802 is a subsequence.
Obviously, this sequence contains all numbers of the form 2^(3*n+1) and 3^(3*n-1), for n > 0.

Examples

			9 is a term because 9 = 3^2 = 1^3 + 2^3.
16 is a term because 16 = 2^4 = 2^3 + 2^3.
243 is a term because 243 = 3^5 = 3^3 + 6^3.
		

Crossrefs

Programs

  • PARI
    T = thueinit('z^3+1);
    is(n) = #select(v->min(v[1], v[2])>0, thue(T, n))>0;
    for(n=2, 1e7, if(ispower(n) && is(n), print1(n, ", ")))

A003222 a(n) = 2^(3*n+1) - 2*n*(2*n+1).

Original entry on oeis.org

2, 10, 108, 982, 8120, 65426, 524132, 4194094, 33554160, 268435114, 2147483228, 17179868678, 137438952872, 1099511627074, 8796093021396, 70368744176734, 562949953420256, 4503599627369306, 36028797018962636, 288230376151710262, 2305843009213692312, 18446744073709549810
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [2^(3*n+1)-2*n*(2*n+1): n in [0..20]]; // Vincenzo Librandi, Jun 26 2011
    
  • PARI
    a(n) = 2^(3*n+1)-2*n*(2*n+1); \\ Altug Alkan, Sep 21 2018

Formula

a(n) = A013730(n) - A002943(n).
From R. J. Mathar, May 05 2010: (Start)
a(n) = 11*a(n-1) - 27*a(n-2) + 25*a(n-3) - 8*a(n-4).
G.f.: 2*(1 - 6*x + 26*x^2 + 7*x^3)/((8*x-1)*(x-1)^3). (End)
E.g.f.: 2*exp(x)*(exp(7*x) - x*(3 + 2*x)). - Elmo R. Oliveira, Mar 06 2025

A013766 a(n) = 20^(3*n + 1).

Original entry on oeis.org

20, 160000, 1280000000, 10240000000000, 81920000000000000, 655360000000000000000, 5242880000000000000000000, 41943040000000000000000000000, 335544320000000000000000000000000, 2684354560000000000000000000000000000, 21474836480000000000000000000000000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A009964.

Programs

Formula

From Elmo R. Oliveira, Feb 27 2025: (Start)
G.f.: 20/(1 - 8000*x).
E.g.f.: 20*exp(8000*x).
a(n) = A013730(n)*A013746(n) = A009964(A016777(n)). (End)

A198850 a(n) = 2*8^n - 1.

Original entry on oeis.org

1, 15, 127, 1023, 8191, 65535, 524287, 4194303, 33554431, 268435455, 2147483647, 17179869183, 137438953471, 1099511627775, 8796093022207, 70368744177663, 562949953421311, 4503599627370495, 36028797018963967, 288230376151711743, 2305843009213693951, 18446744073709551615
Offset: 0

Views

Author

Vincenzo Librandi, Oct 31 2011

Keywords

Crossrefs

Cf. A013730.

Programs

  • Magma
    [2*8^n-1: n in [0..30]];

Formula

a(n) = 8*a(n-1) + 7.
a(n) = 9*a(n-1) - 8*a(n-2), n > 1.
G.f.: (1+6*x)/((8*x-1)*(x-1)). - R. J. Mathar, Oct 31 2011
From Elmo R. Oliveira, Sep 13 2024: (Start)
E.g.f.: exp(x)*(2*exp(7*x) - 1).
a(n) = A013730(n) - 1. (End)

A379530 a(n) = (A135318(3*n) + A135318(3*n+1) + A135318(3*n+2))/3.

Original entry on oeis.org

1, 3, 8, 23, 64, 185, 512, 1479, 4096, 11833, 32768, 94663, 262144, 757305, 2097152, 6058439, 16777216, 48467513, 134217728, 387740103, 1073741824, 3101920825, 8589934592, 24815366599, 68719476736, 198522932793, 549755813888, 1588183462343, 4398046511104, 12705467698745
Offset: 0

Views

Author

Paul Curtz, Dec 24 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 7, 0, 8}, {1, 3, 8, 23}, 30] (* Amiram Eldar, Dec 31 2024 *)

Formula

a(n) = 7*a(n-2) + 8*a(n-4) with a(0)=1, a(1)=3, a(2)=8, a(3)=23 for n >= 4.
a(2*n) = A001018(n).
a(2*n+1) = A015565(n+1) + A013730(n).

A386874 Irregular triangle read by rows: row n consists of the coefficients in the expansion of the polynomial (1/(2*w)) * (x^2 + x) * ((((v + w)/2)^(n - 1)) * (x^2 + 2*x + 4 + w) - (((v - w)/2)^(n - 1)) * (x^2 + 2*x + 4 - w)), where v = x^2 + 4*x + 4 and w = sqrt(x^4 + 4*x^3 + 12*x^2 + 20*x + 12).

Original entry on oeis.org

0, 1, 1, 0, 4, 7, 4, 1, 0, 15, 40, 42, 23, 7, 1, 0, 56, 201, 306, 262, 140, 48, 10, 1, 0, 209, 943, 1877, 2189, 1672, 881, 325, 82, 13, 1, 0, 780, 4239, 10412, 15368, 15276, 10841, 5660, 2194, 624, 125, 16, 1, 0, 2911, 18506, 54051, 96501, 118175, 105495
Offset: 1

Views

Author

Keywords

Comments

T(n,k) is the number of ways to assign horizontal or vertical barriers at each interior construction dot of the 4 X 2n barrier-free Celtic shadow diagram CK_4^(2n) such that the resulting design consists of exactly k connected components.
The n-th row is the coefficients in the expansion of the Kauffman bracket polynomial for the shadow of the Celtic link CK_4^(2n).

Examples

			The triangle T(n,k) begins:
  n\k 0    1     2     3     4     5       6     7     8     9   10   11  12 13 14
  1:  0    1     1
  2:  0    4     7     4     1
  3:  0   15    40    42    23      7      1
  4:  0   56   201   306   262    140     48    10     1
  5:  0  209   943  1877  2189   1672    881   325    82    13    1
  6:  0  780  4239 10412 15368  15276  10841  5660  2194   624  125   16   1
  7:  0 2911 18506 54051 96501 118175 105495 71107 36885 14817 4579 1064 177 19  1
  ...
		

Crossrefs

Programs

  • Mathematica
    With[{nmax = 15}, CoefficientList[CoefficientList[Series[x*y*(x + 1)*(1 - x*y)/(1 - ((x + 2)^2)*y + ((x + 1)^3)*y^2), {x, 0, 2*nmax}, {y, 0, nmax}], y], x]] // Flatten
  • Maxima
    nmax: 15$ v: x^2 + 4*x + 4$ w: sqrt(x^4 + 4*x^3 + 12*x^2 + 20*x + 12)$
    p(n, x) := expand((1/(2*w))*(x^2 + x)*((((v + w)/2)^(n - 1))*(x^2 + 2*x + 4 + w) - (((v - w)/2)^(n - 1))*(x^2 + 2*x + 4 - w)))$
    create_list(ratcoef(p(n, x), x, k), n, 1, nmax, k, 0, 2*n);

Formula

T(n,1) = A001353(n).
G.f.: x*y*(x + 1)*(1 - x*y) / (1 - ((x + 2)^2)*y + ((x + 1)^3)*y^2).
Previous Showing 11-18 of 18 results.