cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-47 of 47 results.

A155852 n is prime and is the sum of the first k primes for some k in A071151.

Original entry on oeis.org

3, 509, 146749, 26444543, 187206119, 735187721, 1662266153, 2146936021, 2844048943, 4335869143, 5539721989, 5990371801, 6145377247, 6788645863, 10092092897, 19122368737, 20186509381, 25745240897, 32732349829
Offset: 1

Views

Author

Keywords

Comments

3+127+379=509 (prime), ...

Crossrefs

Programs

  • Mathematica
    s1=s2=0;lst={};Do[p=Prime[n];s1+=p;If[PrimeQ[s1],s2+=s1;If[PrimeQ[s2],AppendTo[lst,s2]]],{n,2,8!}];lst

A216686 Numbers n such that n appears in the partial sums of the m-almost primes, where m=bigomega(n).

Original entry on oeis.org

1, 2, 4, 5, 8, 10, 16, 17, 20, 32, 40, 41, 58, 64, 80, 128, 160, 185, 197, 219, 254, 256, 281, 320, 377, 512, 589, 640, 843, 917, 964, 1024, 1247, 1280, 1652, 1707, 1804, 1825, 2048, 2074, 2157, 2519, 2560, 2637, 2642, 2727, 2771, 3614, 3755, 3786, 4046, 4096, 4227
Offset: 1

Views

Author

Gerasimov Sergey, Sep 13 2012

Keywords

Comments

A013918 is a subsequence. - Zak Seidov, Sep 17 2012
Or: Numbers n equal to the sum of the first k numbers x having bigomega(x)=bigomega(n), for some k. - M. F. Hasler, Sep 23 2012

Examples

			2 is in the sequence because 2 appears in A007504.
4 is in the sequence because 4 appears in A062198.
5 is in the sequence because 5 appears in A007504.
6 is not in the sequence because 6 is not in A062198.
8 is in the sequence because 8 appears in A086062,
10 is in the sequence because 10 appears in A062198.
		

Crossrefs

Programs

  • Maple
    alm := proc(n,m) # n-th m-almost prime
        option remember;
        if n =1 then
            2^m ;
        else
            for a from procname(n-1,m)+1 do
                if numtheory[bigomega](a) = m then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    almP := proc(n,m) #n-th partial sum of the m-almost primes
        add(alm(i,m),i=1..n) ;
    end proc:
    isA216686 := proc(n) # is n in the sequence?
        local m ,k,ps;
        m := numtheory[bigomega](n) ;
        for k from 1 do
            ps := almP(k,m) ;
            if ps = n then
                return true;
            elif ps > n then
                return false;
            end  if;
        end do:
    end proc:
    for n from 1 to 4300 do
        if isA216686(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Sep 14 2012
  • PARI
    is_A216686(n)={ my(m=bigomega(n),t); while(n>0, while(bigomega(t++)!=m,); n-=t); !n}  \\ - M. F. Hasler, Sep 23 2012

Extensions

Corrected by R. J. Mathar, Sep 14 2012

A255017 Intersection of A013917 and A071150.

Original entry on oeis.org

3, 503, 1163, 1249, 2297, 3461, 5051, 6563, 9001, 9649, 9689, 11197, 16843, 20233, 22279, 25237, 26681, 27329, 28607, 28669, 29131, 36791, 41507, 49741, 55807, 57697, 59021, 61493, 62731, 64453, 64879, 65129, 68371, 69493, 70619, 70969, 71161, 77893, 79063, 79531, 79801
Offset: 1

Views

Author

Robert G. Wilson v, Feb 12 2015

Keywords

Comments

For these primes, the corresponding term s=A013918(k) and s-2 are twin primes. - Michel Marcus, Feb 23 2015

Crossrefs

Programs

  • PARI
    lista(nn) = {s = 0; forprime(p=2, nn, s += p; if (isprime(s) && isprime(s-2), print1(p, ", ")););} \\ Michel Marcus, Feb 23 2015

A260981 Primes p that are equal to the sum of the first k primes where p=prime(prime(k)).

Original entry on oeis.org

5, 17, 41
Offset: 1

Views

Author

Waleed Mohammed, Ali Adams, Aug 06 2015

Keywords

Comments

Terms listed are the only three primes p found to satisfy the condition that p = prime(m) = Sum_{i=1..k} prime(i) where m=prime(k).
From Jon E. Schoenfield, Aug 19 2015: (Start)
Let S(k) be the sum of the first k primes, and let PP(k) = prime(prime(k)); then the terms of the sequence are the values of prime(prime(k)) at those values of k at which S(k) = PP(k). (This occurs at k = 2, 4 and 6.)
Given the behavior of the ratio S(k)/PP(k) over the range of values of k shown in the table below, it seems very unlikely that this ratio will return to 1 for any k beyond the values that have been tested, and thus very likely that a(3) = 41 = PP(6) is the final term in the sequence:
k S(k) PP(k) S(k)/PP(k)
====== =========== ======== ==============
1 2 3 0.666666...
2 5 = 5 1
3 10 11 0.909090...
4 17 = 17 1
5 28 31 0.903225...
6 41 = 41 1
7 58 59 0.983050...
8 77 67 1.149253...
9 100 83 1.204819...
10 129 109 1.183486...
...
100 24133 3911 6.170544...
1000 3682913 80917 45.514700...
10000 496165411 1366661 363.049367...
100000 62260698721 20491057 3038.432752... (End)

Examples

			k=3: prime(3) = 5 = 2+3 = prime(1) + prime(2).
k=7: prime(7) = 17 = 2+3+5+7 = prime(1) + prime(2) + prime(3) + prime(4).
k=13: prime(13) = 41 = 2+3+5+7+11+13 = prime(1) + prime(2) + prime(3) + prime(4) + prime(5) + prime(6).
		

Crossrefs

A358867 Primes from which subtracting the sum of the first k primes does not yield another prime, for any k.

Original entry on oeis.org

2, 3, 11, 37, 67, 97, 127, 157, 211, 223, 277, 307, 337, 367, 373, 379, 397, 409, 439, 727, 739, 769, 853, 937, 967, 991, 1069, 1129, 1171, 1399, 1447, 1567, 1579, 1597, 1693, 1753, 1777, 1783, 1831, 1861, 1987, 2203, 2617, 3067, 3109, 3793, 4561, 4603, 4783, 4993, 5323, 5431, 5557, 6211, 6373, 7741
Offset: 1

Views

Author

Tamas Sandor Nagy, Dec 03 2022

Keywords

Comments

The greater prime p of a twin prime pair is never a term, since p-2 is the lesser prime of that pair. Terms of A013918 are not terms here either because at the (k-1)-th subtraction the result is the k-th prime.
Given comments in A090304, the last term is likely a(56) = 7741. - Michael S. Branicky, Dec 03 2022

Examples

			11 is a term because 11 - 2 = 9, 11 - (2 + 3) = 6, 11 - (2 + 3 + 5) = 1, and none of these are prime.
17 is not a term because 17 - (2 + 3 + 5) = 7, which is prime.
		

Crossrefs

Primes in A090304.

Programs

  • Mathematica
    primeQ[n_] := n > 0 && PrimeQ[n]; With[{p = Prime[Range[1000]]}, s = Accumulate[p]; q[n_] := AllTrue[s, ! primeQ[n - #] &]; Select[p, q]] (* Amiram Eldar, Dec 04 2022 *)

Extensions

More terms from Michael S. Branicky, Dec 03 2022

A364948 Perfect powers that are equal to the sum of the first k perfect powers > 1 for some k.

Original entry on oeis.org

4, 121, 2548735225
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 14 2023

Keywords

Examples

			121 is a term because 121 = 11^2 = 4 + 8 + 9 + 16 + 25 + 27 + 32 = 2^2 + 2^3 + 3^2 + 2^4 + 5^2 + 3^3 + 2^5.
		

Crossrefs

Programs

  • Mathematica
    Select[Accumulate[Select[Range[3723875], GCD @@ FactorInteger[#][[All, 2]] > 1 &]], GCD @@ FactorInteger[#][[All, 2]] > 1 &]

A368850 Primes that are equal to the sum of the first k proper prime powers for some k.

Original entry on oeis.org

37, 89, 3391, 6547, 10271, 20233, 88397, 2256827, 6160597, 11073263, 14337313, 15797057, 18938809, 24514339, 28298057, 29442893, 33119963, 40078453, 118950121, 128935063, 135825923, 154641481, 209301217, 244837321, 342462997, 471596659, 498175681
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 07 2024

Keywords

Examples

			37 is a term because 37 is a prime and 37 = 4 + 8 + 9 + 16 = 2^2 + 2^3 + 3^2 + 2^4.
		

Crossrefs

Programs

  • Mathematica
    Select[Accumulate[Select[Range[5000000], PrimeOmega[#] > 1 && PrimePowerQ[#] &]], PrimeQ[#] &]
Previous Showing 41-47 of 47 results.