cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A362870 a(n) = sigma_29(n), the sum of the 29th powers of the divisors of n.

Original entry on oeis.org

1, 536870913, 68630377364884, 288230376688582657, 186264514923095703126, 36845653355419807219092, 3219905755813179726837608, 154742505198902911050973185, 4710128697246313465298968573, 100000000186264514923632574038, 1586309297171491574414436704892
Offset: 1

Views

Author

Vaclav Kotesovec, May 07 2023

Keywords

Comments

In general, for k > 0, Sum_{n>=1} sigma_(4*k+1)(n) / exp(2*Pi*n) = Bernoulli(4*k+2)/(8*k+4). For k = 0, Sum_{n>=1} sigma(n)/exp(2*Pi*n) = 1/24 - 1/(8*Pi) = Bernoulli(2)/4 - 1/(8*Pi).
This formula can best be understood as a statement about the divided Bernoulli numbers b(n) = B(n) / n. Then you can say: If v is twice an odd number greater than 1 (i.e., v = 4*n + 2, a term of A016825 that is greater than 2), then b(v) = 2 * Sum_{j>=1} sigma_{v - 1}(j) / exp(2*Pi*j) = A358625(v) / A075180(v - 1). - Peter Luschny, May 08 2023

Crossrefs

Cf. A000203 (sigma_1), A001160 (sigma_5), A013957 (sigma_9), A013961 (sigma_13), A013965 (sigma_17), A013969 (sigma_21), A281959 (sigma_25).

Programs

  • Maple
    with(NumberTheory): seq(SumOfDivisors(k, 29), k = 1..20);
  • Mathematica
    DivisorSigma[29, Range[20]]
  • PARI
    for(n=1, 20, print1(direuler( p=2, n, 1 / (1 - X) /(1 - p^29*X))[n], ", "))
    
  • Python
    from sympy import divisor_sigma
    def A362870(n): return divisor_sigma(n,29) # Chai Wah Wu, May 07 2023

Formula

G.f.: Sum_{k>=1} k^29 * x^k / (1-x^k).
Dirichlet g.f.: zeta(s-29)*zeta(s).
Sum_{k=1..n} a(k) ~ zeta(30) * n^30 / 30.
Sum_{n>=1} a(n)/exp(2*Pi*n) = 1723168255201/171864 = Bernoulli(30)/60.
Multiplicative with a(p^e) = (p^(29*e+29)-1)/(p^29-1). - Amiram Eldar, Oct 29 2023

A055703 Numbers k such that k | sigma_9(k) - phi(k)^9.

Original entry on oeis.org

1, 2, 12, 54, 76, 90, 216, 423, 514, 531, 621, 2166, 2241, 2772, 2976, 4752, 5154, 5400, 5481, 6264, 7290, 7344, 9018, 9144, 9470, 9555, 14094, 14904, 19494, 21222, 23780, 25848, 28323, 34830, 34911, 38220, 40122, 48768, 49079, 55782, 59400
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Comments

sigma_9(k) is the sum of the 9th powers of the divisors of k (A013957).

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[DivisorSigma[9, n]-EulerPhi[n]^9, n]==0, Print[n]], {n, 1, 10^5}]
  • PARI
    isok(n) = !((sigma(n, 9) - eulerphi(n)^9) % n); \\ Michel Marcus, Mar 02 2014

Extensions

Definition corrected by Michel Marcus, Mar 02 2014

A081866 a(n) = sigma_9(2n-1).

Original entry on oeis.org

1, 19684, 1953126, 40353608, 387440173, 2357947692, 10604499374, 38445332184, 118587876498, 322687697780, 794320419872, 1801152661464, 3814699218751, 7625984925160, 14507145975870, 26439622160672, 46413842369328, 78815680978608, 129961739795078, 208738965677816
Offset: 1

Views

Author

Benoit Cloitre, Apr 12 2003

Keywords

Crossrefs

Cf. A013957.

Programs

  • Mathematica
    DivisorSigma[9,Range[1,41,2]] (* Harvey P. Dale, Dec 01 2013 *)
  • PARI
    a(n) = sigma(2*n-1, 9); \\ Amiram Eldar, Jan 08 2025

Formula

Sum_{k=1..n} a(k) ~ c * n^10, where c = 31 * Pi^10 / 56700 = 51.200872... . - Amiram Eldar, Jan 08 2025

A279926 a(n) = Sum_{k=1..n-1} sigma_3(k)*sigma_9(n-k).

Original entry on oeis.org

0, 1, 522, 24329, 454250, 4905766, 36532244, 207705929, 961214238, 3784166376, 13066960126, 40511160326, 114681233758, 300599979884, 737035375772, 1705830324553, 3751239987240, 7887626314003, 15927815870322, 31031953887704, 58508991327728, 107133058597170
Offset: 1

Views

Author

Seiichi Manyama, Dec 23 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[If[k == 0, 0, DivisorSigma[3, k]] DivisorSigma[9, n - k], {k, 0, n - 1}], {n, 22}] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    a(n) = sum(k=1, n-1, sigma(k, 3)*sigma(n-k, 9)) \\ Felix Fröhlich, Dec 23 2016

Formula

a(n) = (sigma_13(n) - 11*sigma_9(n) + 10*sigma_3(n))/2640.

A280021 Expansion of phi_{11, 2}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.

Original entry on oeis.org

0, 1, 2052, 177156, 4202512, 48828150, 363524112, 1977326792, 8606744640, 31382654013, 100195363800, 285311670732, 744500215872, 1792160394206, 4057474577184, 8650199741400, 17626613022976, 34271896307922, 64397206034676, 116490258898580, 205200886312800
Offset: 0

Views

Author

Seiichi Manyama, Feb 22 2017

Keywords

Comments

Multiplicative because A013957 is. - Andrew Howroyd, Jul 23 2018

Crossrefs

Cf. A282097 (phi_{3, 2}), A282099 (phi_{5, 2}), A282751 (phi_{7, 2}), A282753 (phi_{9, 2}), this sequence (phi_{11, 2}).
Cf. A282549 (E_2*E_4^3), A282792 (E_2^2*E_4*E_6), A282576 (E_2*E_6^2), A058550 (E_4^2*E_6 = E_14).
Cf. A013957 (sigma_9(n)), A282254 (n*sigma_9(n)), this sequence (n^2*sigma_9(n)).
Cf. A013668 (zeta(10)).

Programs

  • Mathematica
    Table[If[n>0, n^2 * DivisorSigma[9, n], 0], {n, 0, 20}] (* Indranil Ghosh, Mar 12 2017 *)
  • PARI
    for(n=0, 20, print1(if(n==0, 0, n^2 * sigma(n, 9)),", ")) \\ Indranil Ghosh, Mar 12 2017

Formula

a(n) = n^2*A013957(n) for n > 0.
a(n) = (6*A282549(n) - 5*A282792(n) + 4*A282576(n) - 5*A058550(n))/1728.
Sum_{k=1..n} a(k) ~ zeta(10) * n^12 / 12. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^(2*e) * (p^(9*e+9)-1)/(p^9-1).
Dirichlet g.f.: zeta(s-2)*zeta(s-11). (End)
Previous Showing 21-25 of 25 results.