cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 45 results. Next

A238490 Odd primes p that divide a Lucas quotient studied by H. C. Williams: A001353(p - (3/p))/p, where (3/p) is a Jacobi symbol.

Original entry on oeis.org

103, 2297860813
Offset: 1

Views

Author

John Blythe Dobson, Mar 28 2014

Keywords

Comments

The condition for an odd prime p to be a member of this sequence is that p^2 divides A001353(p - (3/p)).
Neither this quotient, nor the Lucas sequence U(4, 1) on which it is based, has a common name; but its fundamental discriminant of 3 places it between the quotient based on the Pell sequence U(2, -1) with discriminant 2 (A000129), and that based on the Fibonacci sequence U(1, -1) with discriminant 5 (A000045). Values of p dividing the Pell quotient will be found under A238736, while for the Fibonacci quotient it is known that there is no such p < 9.7*10^14.
The interest in this family of number-theoretic quotients derives from H. C. Williams, "Some formulas concerning the fundamental unit of a real quadratic field," p. 440, which proves a formula connecting the present quotient with the Fermat quotient base 2 (A007663), the Fermat quotient base 3 (A146211), and the harmonic number H(floor(p/12)) (see the Formula section below). As is well known, the vanishing of each of these Fermat quotients is a necessary condition for the failure of the first case of Fermat's Last Theorem (see discussions under A001220 and A014127); and a corresponding result concerning this type of harmonic number was proved by Dilcher and Skula. Thus, the vanishing mod p of the quotient based on U(4, 1) is also a necessary condition for the failure of the first case of Fermat's Last Theorem.
The pioneering computation for this quotient appears to be that of Elsenhans and Jahnel, "The Fibonacci sequence modulo p^2," p. 5, who report 103 as the only value of a(n) < 10^9. Extending the search to p < 2.5*10^10 has found only one further solution, 2297860813.
Let LucasQuotient(p) = A001353(p - (3/p))/p, q_2 = (2^(p-1) - 1)/p = A007663(p) be the corresponding Fermat quotient of base 2, q_3 = (3^(p-1) - 1)/p = A146211(p) be the corresponding Fermat quotient of base 3, H(floor(p/12)) be a harmonic number. Then Williams (1991) shows that 6*(3/p)*LucasQuotient(p) == -6*q_2 - 3*q_3 - 2*H(floor(p/12)) (mod p).
Also with an initial 2, primes p such that p^2 divides A001353(p - Kronecker(12,p)) (note that 12 is the discriminant of the characteristic polynomial of A001353, x^2 - 4x + 1). - Jianing Song, Jul 28 2018

Examples

			LucasQuotient(103) = 103*851367555454046677501642274766916900879231854719584128208.
		

Crossrefs

Programs

  • Mathematica
    The following criteria are equivalent:
    PrimeQ[p] &&
      Mod[(MatrixPower[{{1,2},{1,3}}, p-JacobiSymbol[3,p]-1].{{1},{1}})[[2,1]], p^2]==0
    PrimeQ[p] && Mod[Last[LinearRecurrence[{4,-1},{0,1}, p-JacobiSymbol[3,p]+1]], p^2]==0
  • PARI
    isprime(p) && (Mod([2, 2; 1, 0], p^2)^(p-kronecker(3, p)))[2, 1]==0 \\ This test, which was used to find the second member of this sequence, is based on the test for A238736 devised by Charles R Greathouse IV

A298951 Wieferich primes to base 22.

Original entry on oeis.org

13, 673, 1595813, 492366587, 9809862296159
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jan 30 2018

Keywords

Comments

Prime numbers p such that p^2 divides 22^(p-1) - 1.
Next term, if it exists, is larger than 8.72*10^13.
492366587 was found by Montgomery (cf. Montgomery, 1993). - Felix Fröhlich, Jan 30 2018

Crossrefs

Wieferich primes to base b: A001220 (b=2), A014127 (b=3), A123692 (b=5), A212583 (b=6), A123693 (b=7), A045616 (b=10), A111027 (b=12), A128667 (b=13), A234810 (b=14), A242741 (b=15), A128668 (b=17), A244260 (b=18), A090968 (b=19), A242982 (b=20), this sequence (b=22), A128669 (b=23), A306255 (b=26), A306256 (b=30).

Programs

  • PARI
    forprime(p=1, , if(Mod(22, p^2)^(p-1)==1, print1(p, ", ")))

A306255 Wieferich primes to base 26.

Original entry on oeis.org

3, 5, 71, 486999673, 6695256707
Offset: 1

Views

Author

Jianing Song, Feb 01 2019

Keywords

Comments

Prime numbers p such that p^2 divides 26^(p-1) - 1.
No more terms up to 9.8*10^13.

Crossrefs

Wieferich primes to base b: A001220 (b=2), A014127 (b=3), A123692 (b=5), A212583 (b=6), A123693 (b=7), A045616 (b=10), A111027 (b=12), A128667 (b=13), A234810 (b=14), A242741 (b=15), A128668 (b=17), A244260 (b=18), A090968 (b=19), A242982 (b=20), A298951 (b=22), A128669 (b=23), this sequence (b=26), A306256 (b=30).

Programs

  • Mathematica
    Select[Prime[Range[26*10^6]],PowerMod[26,#-1,#^2]==1&] (* The program generates the first 4 terms of the sequence. *) (* Harvey P. Dale, Aug 23 2024 *)
  • PARI
    forprime(p=2, , if(Mod(26, p^2)^(p-1)==1, print1(p, ", ")))

A306256 Wieferich primes to base 30.

Original entry on oeis.org

7, 160541, 94727075783
Offset: 1

Views

Author

Jianing Song, Feb 01 2019

Keywords

Comments

Prime numbers p such that p^2 divides 30^(p-1) - 1.
No more terms up to 9.8*10^13.

Crossrefs

Wieferich primes to base b: A001220 (b=2), A014127 (b=3), A123692 (b=5), A212583 (b=6), A123693 (b=7), A045616 (b=10), A111027 (b=12), A128667 (b=13), A234810 (b=14), A242741 (b=15), A128668 (b=17), A244260 (b=18), A090968 (b=19), A242982 (b=20), A298951 (b=22), A128669 (b=23), A306255 (b=26), this sequence (b=30).

Programs

  • PARI
    forprime(p=2, , if(Mod(30, p^2)^(p-1)==1, print1(p, ", ")))

A178815 First base of a nonzero Fermat quotient mod the n-th prime.

Original entry on oeis.org

3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Jonathan Sondow, Jun 17 2010, Jun 24 2010, Jun 25 2010

Keywords

Comments

First number m coprime to p = p_n such that p does not divide q_p(m), where q_p(m) = (m^(p-1) - 1)/p is the Fermat quotient of p to the base m.
It is known that a(n) = O((log p_n)^2) as n -> oo. It is conjectured that a(n) = 3 if p_n is a Wieferich prime. See Section 1.1 in Ostafe-Shparlinski (2010).
Additional comments, references, links, and cross-refs are in A001220.
a(n) > 3 iff prime(n) is a term of both A001220 and A014127, i.e., iff A240987(n) = 2. - Felix Fröhlich, Jul 09 2016

Examples

			p_1 = 2 and 2^2 divides 1^(2-1) - 1 = 0 but not 3^(2-1) - 1 = 2, so a(1) = 3.
p_4 = 7 and 7^2 does not divide 2^(7-1) - 1 = 63, so a(4) = 2.
p_183 = 1093 and 1093^2 divides 2^1092 - 1 but not 3^1092 - 1, so a(183) = 3.
Similarly, p_490 = 3511 and a(490) = 3. See A001220.
		

Crossrefs

Programs

  • Mathematica
    Table[b = 2; While[PowerMod[b, Prime[n] - 1, #^2] == 1 || GCD[b, #] > 1, b++] &@ Prime@ n; b, {n, 120}] (* Michael De Vlieger, Jul 09 2016 *)
  • PARI
    a(n) = my(b=2, p=prime(n)); while(Mod(b, p^2)^(p-1)==1 || gcd(b, p) > 1, b++); b \\ Felix Fröhlich, Jul 09 2016

Formula

a(n) = 2 if n > 1 and p_n is not a Wieferich prime A001220.
a(n) > 2 if p_n is a Wieferich prime.
A178844(n) = ((a(n)^(p-1) - 1)/p) mod p, where p = p_n.

A247072 Smallest Wieferich prime (> sqrt(n)) in base n.

Original entry on oeis.org

2, 1093, 11, 1093, 20771, 66161, 5, 3, 11, 487, 71, 2693, 863, 29, 29131, 1093, 46021, 5, 7, 281
Offset: 1

Views

Author

Eric Chen, Nov 16 2014

Keywords

Comments

a(n) = Smallest prime such that n appears in A143548. - Eric Chen, Nov 26 2014
The square of a(n) is the smallest squared prime that is a pseudoprime (> n) in base n; for example, a(2) = 1093, and 1093^2 = 1194649 is the smallest squared prime that is pseudoprime in base 2. - Eric Chen, Nov 26 2014
Is a(n) defined for all n? - Eric Chen, Nov 26 2014
Does every prime appear in this sequence? - Eric Chen, Nov 26 2014
a(22)..a(28) = {13, 13, 5, 20771, 71, 11, 19}, a(30)..a(46) = {7, 7, 1093, 233, 46145917691, 1613, 66161, 77867, 17, 8039, 11, 29, 23, 103, 229, 1283, 829}, a(48)..a(49) = {7, 491531}, a(51)..a(60) = {41, 461, 47, 19, 30109, 647, 47699, 131, 2777, 29}, a(62)..a(71) = {19, 23, 1093, 17, 89351671, 47, 19, 19, 13, 47}, a(74)..a(81) = {1251922253819, 17, 37, 32687, 43, 263, 13, 11}, a(83)..a(100) = {4871, 163, 11779, 68239, 1999, 2535619637, 13, 6590291053, 293, 727, 509, 11, 2137, 109, 2914393, 28627, 13, 487}; a(n) is currently unknown for n = {21, 29, 47, 50, 61, 72, 73, 82, 126, 132, 154, 186, 187, 188, 200, 203, 222, 231, 237, 301, 304, 309, 311, 327, 335, 347, 351, 355, 357, 435, 441, 454, 458, 496, 541, 542, 546, 554, 570, 593, 609, 610, 639, 640, 654, 662, 668, 674, 692, 697, 698, 701, 718, 724, 725, 727, 733, 743, 760, 772, 775, 777, 784, 798, 807, 808, 812, 829, 841, 858, 860, 871, 883, 912, 919, 944, 980, 983, 986, ...}. - Eric Chen, Nov 26 2014
a(21) > 3.4 * 10^13. - Eric Chen, Nov 26 2014

Examples

			a(12) = 2693 because the Wieferich primes to base 12 are 2693, 123653, ..., and 2693 is greater than sqrt(12), so a(12) = 2693.
a(17) = 46021 because the Wieferich primes to base 17 are 2, 3, 46021, 48947, 478225523351, ..., but neither 2 nor 3 is greater than sqrt(17), so a(17) = 46021.
		

Crossrefs

Programs

  • Mathematica
    a247072[n_] := Block[{p = Int[Sqrt[n]]+1}, While[!PrimeQ[p] || [p < 10^8 && PowerMod[n, p - 1, p^2] != 1], p++]; If[p == 10^8, 0, p]]; Table[ a247072[n], {n, 100}] (* Eric Chen, Nov 27 2014 *)
  • PARI
    a(n)=forprime(p=sqrtint(n)+1,,if(Mod(n^(p-1),p^2)==1,return(p)))
    n=1; while(n<101, print1(a(n), ", "); n++) \\ Charles R Greathouse IV, Nov 16 2014

A260377 Primes p such that A001221(p-1)^(p-1) == 1 (mod p^2).

Original entry on oeis.org

3, 5, 17, 257, 1093, 3511, 65537, 1006003
Offset: 1

Views

Author

Felix Fröhlich, Jul 23 2015

Keywords

Comments

No further terms up to 10^9.
All currently (as of 2015-07-23) known terms of A001220 and A019434 are in the sequence, as is A014127(2), but A014127(1) is not.

Examples

			A001221(1092) == 4 and 4^1092 == 1 (mod 1093^2), so 1093 is a term of the sequence.
		

Crossrefs

Programs

  • PARI
    forprime(p=1, 1e9, if(Mod(omega(p-1), p^2)^(p-1)==1, print1(p, ", ")))

A179078 a(n) = ((3^p - 3)/p) mod p where p is n-th prime.

Original entry on oeis.org

1, 2, 3, 4, 0, 11, 13, 16, 5, 16, 20, 17, 22, 6, 33, 16, 5, 39, 45, 25, 5, 4, 26, 72, 21, 53, 43, 80, 85, 12, 53, 94, 54, 135, 113, 132, 125, 32, 34, 163, 100, 147, 52, 61, 84, 46, 54, 80, 122, 103, 83, 43, 109, 87, 127, 125, 239, 129, 63, 98, 160, 223, 29, 82, 3, 68, 288, 322
Offset: 1

Views

Author

Artur Jasinski, Jun 28 2010

Keywords

Comments

a(n) = 0 where n=5 (p=11) and n=78940 (p=1006003) see A014127.

Crossrefs

Programs

  • Maple
    f:= p -> (3&^p-3 mod p^2)/p:
    seq(f(ithprime(i)),i=1..100); # Robert Israel, Nov 03 2024
  • Mathematica
    aa = {}; Do[AppendTo[aa, Mod[(3^Prime[n] - 3)/Prime[n], Prime[n]]], {n, 1, 100}]; aa (* Artur Jasinski *)

A240987 (2^(p-1) modulo p^2) + (3^(p-1) modulo p^2), where p = prime(n).

Original entry on oeis.org

5, 4, 22, 58, 57, 145, 393, 401, 784, 466, 715, 705, 1806, 1163, 2587, 3129, 2893, 2991, 1677, 2416, 5988, 5769, 9298, 2672, 6210, 17879, 14628, 11879, 18314, 9833, 9908, 12054, 9729, 10427, 34719, 15102, 27634
Offset: 1

Views

Author

Felix Fröhlich, Aug 06 2014

Keywords

Comments

A value of 2 would indicate a prime that is Wieferich to bases 2 and 3 (i.e., a term of both A001220 and A014127). No such prime is currently known.

Crossrefs

Programs

  • Maple
    map(p -> (2 &^ (p-1) mod p^2) + (3 &^ (p-1) mod p^2), select(isprime,[2,seq(2*i+1,i=1..1000)])); # Robert Israel, Aug 11 2014
  • Mathematica
    Table[p = Prime[n]; PowerMod[2, p-1, p^2] + PowerMod[3, p-1, p^2], {n, 40}] (* Jean-François Alcover, Sep 19 2018 *)
  • PARI
    forprime(p=2, 1e2, a=2^(p-1)%p^2; b=3^(p-1)%p^2; print1(a+b, ", "))

A306448 Pseudoprimes to base 9 that are not squarefree.

Original entry on oeis.org

4, 8, 28, 52, 121, 364, 532, 616, 1036, 1288, 3052, 3751, 4376, 4636, 4961, 5356, 6364, 7381, 8744, 11011, 11476, 12124, 15964, 19096, 19684, 21196, 21736, 24388, 26596, 29161, 31876, 32791, 37576, 40132, 45676, 47972, 53092, 61831, 67276, 72136, 80476, 80956, 86296
Offset: 1

Views

Author

Jianing Song, Feb 16 2019

Keywords

Comments

Numbers k that are not squarefree and satisfy 9^(k-1) == 1 (mod k).
Any term is divisible by the square of a base-9 Wieferich prime ({2} U {base-3 Wieferich primes} = {2} U A014127 = {2, 11, 1006003, ...}).
Intersection of A020138 and A013929.

Crossrefs

Pseudoprimes to base b that are not squarefree: A158358 (b=2), A244065 (b=3), A243010 (b=5), A243089 (b=7), A243090 (b=8), this sequence (b=9), A306449 (b=10).
Cf. also A014127, A020138, A013929.

Programs

  • PARI
    for(n=1, 10^5, if(Mod(9, n)^(n-1)==1 && !issquarefree(n), print1(n, ", ")))
Previous Showing 21-30 of 45 results. Next