cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A323211 Level 1 of Pascal's pyramid. T(n, k) triangle read by rows for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 2, 4, 4, 2, 1, 1, 2, 5, 7, 5, 2, 1, 1, 2, 6, 11, 11, 6, 2, 1, 1, 2, 7, 16, 21, 16, 7, 2, 1, 1, 2, 8, 22, 36, 36, 22, 8, 2, 1, 1, 2, 9, 29, 57, 71, 57, 29, 9, 2, 1, 1, 2, 10, 37, 85, 127, 127, 85, 37, 10, 2, 1
Offset: 0

Views

Author

Peter Luschny, Feb 11 2019

Keywords

Comments

Pascal's pyramid is defined by recurrence. P(0) is Pascal's triangle. Now assume P(n-1) already constructed. Then P(n) is found by the steps: (1) Add 1 to each term of P(n-1). (2) Add at the left and at the right side a diagonal consisting all of 1s and complement the top with the rows 1 and 1, 1. A similar construction starting from the Pascal's triangle and subtracting 1 from all terms leads to A014473.

Examples

			Triangle starts:
                                1
                              1,  1
                            1,  2,  1
                          1,  2,  2,  1
                        1,  2,  3,  2,  1
                      1,  2,  4,  4,  2,  1
                    1,  2,  5,  7,  5,  2,  1
                 1,  2,  6,  11, 11,  6,  2,  1
               1,  2,  7,  16,  21, 16,  7,  2,  1
             1,  2,  8,  22, 36, 36,  22,  8,  2,  1
           1,  2,  9,  29, 57,  71,  57, 29,  9,  2,  1
		

Crossrefs

Differs from A323231 only in the second term.
Row sums are A323227.

Programs

  • Magma
    A323211:= func< n,k | n le 1 select 1 else 1 + Binomial(n-2,k-1) >;
    [A323211(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Sep 26 2024
    
  • Maple
    T := (n, k) -> `if`(n=1, 1, binomial(n-2, k-1) + 1):
    seq(seq(T(n, k), k=0..n), n=0..10);
    # Alternative:
    T := proc(n, k) option remember;
    if k = n then return 1 fi; if k < 2 then return k+1 fi;
    T(n-1, k-1) + T(n-1, k) - 1 end:
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    A323211[n_, k_]:= If[n<2, 1, Binomial[n-2, k-1] +1];
    Table[A323211[n,k], {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 26 2024 *)
  • SageMath
    def A323211(n,k): return 1 if (n<2) else 1 + binomial(n-2,k-1)
    flatten([[A323211(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Sep 26 2024

Formula

T(n, k) = binomial(n-2, k-1) + 1 if n != 1 else 1.
G.f.: (1 + 3*y + y^2 + x^4*y^2*(1 + y)^2 + x^2*y*(2 + 5*y + 2*y^2) - x^3*y*(1 + 4*y + 4*y^2 + y^3) - x*(1 + 5*y + 5*y^2 + y^3)/((1 - x)*(1 + y)^2*(1 - x*y)*(1 - x - x*y)). - Stefano Spezia, Sep 26 2024
From G. C. Greubel, Sep 26 2024: (Start)
T(n, n-k) = T(n, k) (symmetry).
T(2*n, n) = A323230(n).
Sum_{k=0..n} (-1)^k*T(n, k) = (n+1 mod 2) - [n=2].
Sum_{k=0..floor(n/2)} T(n-k, k) = Fibonacci(n-2) + (1/4)*(2*n + 3 + (-1)^n) +[n=0] - [n=1]. (End)

A259525 First differences of A007318, when Pascal's triangle is seen as flattened list.

Original entry on oeis.org

0, 0, 0, 1, -1, 0, 2, 0, -2, 0, 3, 2, -2, -3, 0, 4, 5, 0, -5, -4, 0, 5, 9, 5, -5, -9, -5, 0, 6, 14, 14, 0, -14, -14, -6, 0, 7, 20, 28, 14, -14, -28, -20, -7, 0, 8, 27, 48, 42, 0, -42, -48, -27, -8, 0, 9, 35, 75, 90, 42, -42, -90, -75, -35, -9, 0, 10, 44, 110
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 18 2015

Keywords

Comments

A214292 gives first differences per row in Pascal's triangle.

Crossrefs

Programs

  • Haskell
    a259525 n = a259525_list !! n
    a259525_list = zipWith (-) (tail pascal) pascal
                               where pascal = concat a007318_tabl
    
  • Magma
    [k eq n select 0 else (n-2*k-1)*Binomial(n,k+1)/(n-k): k in [0..n], n in [0..14]]; // G. C. Greubel, Apr 25 2024
    
  • Mathematica
    Table[If[k==n, 0, ((n-2*k-1)/(n-k))*Binomial[n,k+1]], {n,0,12}, {k,0, n}]//Flatten (* G. C. Greubel, Apr 25 2024 *)
  • SageMath
    flatten([[binomial(n,k+1) -binomial(n,k) +int(k==n) for k in range(n+1)] for n in range(15)]) # G. C. Greubel, Apr 25 2024

Formula

From G. C. Greubel, Apr 25 2024: (Start)
If viewed as a triangle then:
T(n, k) = binomial(n, k+1) - binomial(n, k), with T(n, n) = 0.
T(n, n-k) = - T(n, k), for 0 <= k < n.
T(2*n, n) = [n=0] - A000108(n).
Sum_{k=0..n} T(n, k) = 0 (row sums).
Sum_{k=0..floor(n/2)} T(n, k) = A047171(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A021499(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A074331(n-1). (End)

A177767 Triangle read by rows: T(n,k) = binomial(n - 1, k - 1), 1 <= k <= n, and T(n,0) = A153881(n+1), n >= 0.

Original entry on oeis.org

1, -1, 1, -1, 1, 1, -1, 1, 2, 1, -1, 1, 3, 3, 1, -1, 1, 4, 6, 4, 1, -1, 1, 5, 10, 10, 5, 1, -1, 1, 6, 15, 20, 15, 6, 1, -1, 1, 7, 21, 35, 35, 21, 7, 1, -1, 1, 8, 28, 56, 70, 56, 28, 8, 1, -1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, -1, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1
Offset: 0

Views

Author

Roger L. Bagula, May 13 2010

Keywords

Comments

Row sums yield A000225 preceded by 1.
Except for signs, this is A135225.

Examples

			Triangle begins:
   1;
  -1, 1;
  -1, 1, 1;
  -1, 1, 2,  1;
  -1, 1, 3,  3,  1;
  -1, 1, 4,  6,  4,   1;
  -1, 1, 5, 10, 10,   5,   1;
  -1, 1, 6, 15, 20,  15,   6,  1;
  -1, 1, 7, 21, 35,  35,  21,  7,  1;
  -1, 1, 8, 28, 56,  70,  56, 28,  8, 1;
  -1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1;
   ...
		

Crossrefs

Programs

  • Magma
    A177767:= func< n,k | k eq n select 1 else  k eq 0 select -1 else Binomial(n-1, k-1) >;
    [A177767(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Apr 22 2024
    
  • Mathematica
    Flatten[Table[If[n == 0, {1}, CoefficientList[x*(1 + x)^( n - 1) - 1, x]], {n, 0, 10}]]
  • Maxima
    T(n, k) := if k = 0 then 2*floor(1/(n + 1)) - 1 else binomial(n - 1, k - 1)$
    create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Oct 23 2018 */
    
  • SageMath
    flatten([[binomial(n-1, k-1) - int(k==0) + 2*int(n==0) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Apr 22 2024

Formula

Row n = coefficients in the expansion of x*(1 + x)^(n - 1) - 1, n > 0.
From Franck Maminirina Ramaharo, Oct 23 2018: (Start)
G.f.: (1 - 3*y + (2 + x)*y^2)/(1 - (2 + x)*y + (1 + x)*y^2).
E.g.f.: (2 + x - (1 + x)*exp(y) + x*exp((1 + x)*y))/(1 + x). (End)
From G. C. Greubel, Apr 22 2024: (Start)
Sum_{k=0..n} (-1)^k*T(n, k) = A153881(n+1) - [n=1].
Sum_{k=0..floor(n/2)} T(n-k, k) = A000071(n-1) + [n=0].
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = -A131026(n-1) + [n=0]. (End)

Extensions

Edited and new name by Franck Maminirina Ramaharo, Oct 23 2018
Previous Showing 11-13 of 13 results.