A113070
Expansion of ((1+x)/(1-2x))^2.
Original entry on oeis.org
1, 6, 21, 60, 156, 384, 912, 2112, 4800, 10752, 23808, 52224, 113664, 245760, 528384, 1130496, 2408448, 5111808, 10813440, 22806528, 47972352, 100663296, 210763776, 440401920, 918552576, 1912602624, 3976200192, 8254390272, 17112760320
Offset: 0
-
[3*2^n*(3*n+1)/4+0^n/4: n in [0..30]]; // Vincenzo Librandi, May 21 2011
-
Join[{1},LinearRecurrence[{4,-4},{6,21},30]] (* or *) CoefficientList[ Series[((1+x)/(1-2x))^2,{x,0,30}],x] (* Harvey P. Dale, May 20 2011 *)
A119673
T(n, k) = 3*T(n-1, k-1) + T(n-1, k) for k < n and T(n, n) = 1, T(n, k) = 0, if k < 0 or k > n; triangle read by rows.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 7, 13, 1, 1, 10, 34, 40, 1, 1, 13, 64, 142, 121, 1, 1, 16, 103, 334, 547, 364, 1, 1, 19, 151, 643, 1549, 2005, 1093, 1, 1, 22, 208, 1096, 3478, 6652, 7108, 3280, 1, 1, 25, 274, 1720, 6766, 17086, 27064, 24604, 9841, 1, 1, 28, 349, 2542, 11926, 37384, 78322, 105796, 83653, 29524, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 4, 1;
1, 7, 13, 1;
1, 10, 34, 40, 1;
1, 13, 64, 142, 121, 1;
1, 16, 103, 334, 547, 364, 1;
1, 19, 151, 643, 1549, 2005, 1093, 1;
1, 22, 208, 1096, 3478, 6652, 7108, 3280, 1;
1, 25, 274, 1720, 6766, 17086, 27064, 24604, 9841, 1;
-
function T(n,k)
if k lt 0 or k gt n then return 0;
elif k eq n then return 1;
else return 3*T(n-1,k-1) + T(n-1,k);
end if;
return T;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 18 2019
-
T := (n,k,m) -> (1-m)^(-n+k)-m^(k+1)*pochhammer(n-k,k+1)* hypergeom([1,n+1],[k+2],m)/(k+1)!; A119673 := (n,k) -> T(n,k,3);
seq(print(seq(round(evalf(A119673(n,k))),k=0..n)),n=0..10); # Peter Luschny, Jul 25 2014
-
T[, 0]=1; T[n, n_]=1; T[n_, k_]/; 0, ] = 0;
Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019 *)
-
T(n,k) = if(k<0 || k>n, 0, if(k==n, 1, 3*T(n-1, k-1) +T(n-1,k)));
for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Nov 18 2019
-
@CachedFunction
def T(n, k):
if (k<0 or k>n): return 0
elif (k==n): return 1
else: return 3*T(n-1, k-1) + T(n-1, k)
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 18 2019
A246797
Triangle read by rows: T(n,k) is the coefficient A_k in the transformation Sum_{k=0..n} (k+1)*x^k = Sum_{k=0..n} A_k*(x-2)^k.
Original entry on oeis.org
1, 5, 2, 17, 14, 3, 49, 62, 27, 4, 129, 222, 147, 44, 5, 321, 702, 627, 284, 65, 6, 769, 2046, 2307, 1404, 485, 90, 7, 1793, 5630, 7683, 5884, 2725, 762, 119, 8, 4097, 14846, 23811, 22012, 12805, 4794, 1127, 152, 9, 9217, 37886, 69891, 75772, 53125, 24954, 7847, 1592, 189, 10
Offset: 0
Triangle starts:
1;
5, 2;
17, 14, 3;
49, 62, 27, 4;
129, 222, 147, 44, 5;
321, 702, 627, 284, 65, 6;
769, 2046, 2307, 1404, 485, 90, 7;
1793, 5630, 7683, 5884, 2725, 762, 119, 8;
4097, 14846, 23811, 22012, 12805, 4794, 1127, 152, 9;
9217, 37886, 69891, 75772, 53125, 24954, 7847, 1592, 189, 10;
...
-
T(n,k) = (k+1)*sum(i=0,n-k,2^i*binomial(i+k+1,k+1))
for(n=0,10,for(k=0,n,print1(T(n,k),", ")))
A246799
Triangle read by rows: T(n,k) is the coefficient A_k in the transformation Sum_{k=0..n} (k+1)*x^k = Sum_{k=0..n} A_k*(x-3)^k.
Original entry on oeis.org
1, 7, 2, 34, 20, 3, 142, 128, 39, 4, 547, 668, 309, 64, 5, 2005, 3098, 1929, 604, 95, 6, 7108, 13304, 10434, 4384, 1040, 132, 7, 24604, 54128, 51258, 27064, 8600, 1644, 175, 8, 83653, 211592, 234966, 149536, 59630, 15252, 2443, 224, 9, 280483, 802082, 1022286, 761896, 365810, 117312, 25123, 3464, 279, 10
Offset: 0
Triangle starts:
1;
7, 2;
34, 20, 3;
142, 128, 39, 4;
547, 668, 309, 64, 5;
2005, 3098, 1929, 604, 95, 6;
7108, 13304, 10434, 4384, 1040, 132, 7;
24604, 54128, 51258, 27064, 8600, 1644, 175, 8;
83653, 211592, 234966, 149536, 59630, 15252, 2443, 224, 9;
280483, 802082, 1022286, 761896, 365810, 117312, 25123, 3464, 279, 10;
...
-
T(n, k) = (k+1)*sum(i=0, n-k, 3^i*binomial(i+k+1, k+1))
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")))
Comments