cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A015121 Triangle of q-binomial coefficients for q=-9.

Original entry on oeis.org

1, 1, 1, 1, -8, 1, 1, 73, 73, 1, 1, -656, 5986, -656, 1, 1, 5905, 484210, 484210, 5905, 1, 1, -53144, 39226915, -352504880, 39226915, -53144, 1, 1, 478297, 3177326971, 257015284435, 257015284435, 3177326971, 478297, 1, 1, -4304672, 257363962948
Offset: 0

Views

Author

Keywords

Comments

May be read as a symmetric triangular (T[n,k]=T[n,n-k]; k=0,...,n; n=0,1,...) or square array (A[n,r]=A[r,n]=T[n+r,r], read by antidiagonals). The diagonals of the former, or rows/columns of the latter, are: A000012 (k=0), A014991 (k=1), A015260 (k=2), A015277 (k=3), A015295 (k=4), A015315 (k=5), A015332 (k=6), A015349 (k=7), A015365 (k=8), A015381 (k=9), A015397 (k=10), A015414 (k=11), A015432 (k=12). - M. F. Hasler, Nov 05 2012

Crossrefs

Cf. analog triangles for other q: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015117 (q=-7), A015118 (q=-8), A015123 (q=-10), A015124 (q=-11), A015125 (q=-12), A015129 (q=-13), A015132 (q=-14), A015133 (q=-15). - M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24: A022166 (q=2), A022167 (q=3), A022168, A022169, A022170, A022171, A022172, A022173, A022174 (q=10), A022175, A022176, A022177, A022178, A022179, A022180, A022181, A022182, A022183, A022184 (q=20), A022185, A022186, A022187, A022188. - M. F. Hasler, Nov 05 2012

Programs

  • Mathematica
    Table[QBinomial[n, k, -9], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 09 2016 *)
  • PARI
    T015121(n, k, q=-9)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012

A015123 Triangle of q-binomial coefficients for q=-10.

Original entry on oeis.org

1, 1, 1, 1, -9, 1, 1, 91, 91, 1, 1, -909, 9191, -909, 1, 1, 9091, 918191, 918191, 9091, 1, 1, -90909, 91828191, -917272809, 91828191, -90909, 1, 1, 909091, 9182728191, 917364637191, 917364637191, 9182728191, 909091, 1, 1, -9090909, 918273728191
Offset: 0

Views

Author

Keywords

Comments

May be read as a symmetric triangular (T[n,k]=T[n,n-k]; k=0,...,n; n=0,1,...) or square array (A[n,r]=A[r,n]=T[n+r,r], read by antidiagonals). The diagonals in the former, or row/columns in the latter, are then (k=0,...,12): A000012, A014992, A015261, A015278, A015298, A015316, A015333, A015350, A015367, A015382, A015398, A015417, A015433. - M. F. Hasler, Nov 04 & Nov 05 2012

Crossrefs

Cf. analog triangles for other q: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015117 (q=-7), A015118 (q=-8), A015121 (q=-9), A015124 (q=-11), A015125 (q=-12), A015129 (q=-13), A015132 (q=-14), A015133 (q=-15). - M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24: A022166 (q=2), A022167 (q=3), A022168, A022169, A022170, A022171, A022172, A022173, A022174 (q=10), A022175, A022176, A022177, A022178, A022179, A022180, A022181, A022182, A022183, A022184 (q=20), A022185, A022186, A022187, A022188. - M. F. Hasler, Nov 05 2012

Programs

  • Mathematica
    Table[QBinomial[n, k, -10], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 09 2016 *)
  • PARI
    T015123(n, k, q=-10)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012

A015124 Triangle of q-binomial coefficients for q=-11.

Original entry on oeis.org

1, 1, 1, 1, -10, 1, 1, 111, 111, 1, 1, -1220, 13542, -1220, 1, 1, 13421, 1637362, 1637362, 13421, 1, 1, -147630, 198134223, -2177691460, 198134223, -147630, 1, 1, 1623931, 23974093353, 2898705467483, 2898705467483, 23974093353, 1623931, 1, 1
Offset: 0

Views

Author

Keywords

Comments

May be read as a symmetric triangular (T[n,k]=T[n,n-k]; k=0,...,n; n=0,1,...) or square array (A[n,r]=A[r,n]=T[n+r,r], read by antidiagonals). The diagonals in the former, or row/columns in the latter, are then (k=0,...,12): A000012, A014993, A015262, A015279, A015300, A015317, A015334, A015353, A015368, A015383, A015499, A015418, A015434. - M. F. Hasler, Nov 04 & Nov 05 2012

Crossrefs

Cf. analog triangles for other negative q=-2,...,-15: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015117 (q=-7), A015118 (q=-8), A015121 (q=-9), A015123 (q=-10), A015125 (q=-12), A015129 (q=-13), A015132 (q=-14), A015133 (q=-15). - M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24: A022166 (q=2), A022167 (q=3), A022168, A022169, A022170, A022171, A022172, A022173, A022174 (q=10), A022175, A022176, A022177, A022178, A022179, A022180, A022181, A022182, A022183, A022184 (q=20), A022185, A022186, A022187, A022188. - M. F. Hasler, Nov 05 2012

Programs

  • PARI
    T015124(n, k, q=-11)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012

A015125 Triangle of q-binomial coefficients for q=-12.

Original entry on oeis.org

1, 1, 1, 1, -11, 1, 1, 133, 133, 1, 1, -1595, 19285, -1595, 1, 1, 19141, 2775445, 2775445, 19141, 1, 1, -229691, 399683221, -4793193515, 399683221, -229691, 1, 1, 2756293, 57554154133, 8283038077141, 8283038077141, 57554154133, 2756293, 1, 1
Offset: 0

Views

Author

Keywords

Comments

May be read as a symmetric triangular (T[n,k]=T[n,n-k]; k=0,...,n; n=0,1,...) or square array (A[n,r]=A[r,n]=T[n+r,r], read by antidiagonals). The diagonals of the former, or rows/columns of the latter, are, for k=0,...,12: A000012, A014994, A015264, A015281, A015302, A015319, A015336, A015354, A015369, A015384, A015401, A015421, A015436. - M. F. Hasler, Nov 04 2012

Crossrefs

Cf. analog triangles for other negative q=-2,...,-15: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015117 (q=-7), A015118 (q=-8), A015121 (q=-9), A015123 (q=-10), A015124 (q=-11), A015129 (q=-13), A015132 (q=-14), A015133 (q=-15). - M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24: A022166 (q=2), A022167 (q=3), A022168, A022169, A022170, A022171, A022172, A022173, A022174 (q=10), A022175, A022176, A022177, A022178, A022179, A022180, A022181, A022182, A022183, A022184 (q=20), A022185, A022186, A022187, A022188. - M. F. Hasler, Nov 05 2012

Programs

  • PARI
    T015125(n, k, q=-12)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012

A015132 Triangle of (Gaussian) q-binomial coefficients for q=-14.

Original entry on oeis.org

1, 1, 1, 1, -13, 1, 1, 183, 183, 1, 1, -2561, 36051, -2561, 1, 1, 35855, 7063435, 7063435, 35855, 1, 1, -501969, 1384469115, -19375002205, 1384469115, -501969, 1, 1, 7027567, 271355444571, 53166390519635, 53166390519635, 271355444571
Offset: 0

Views

Author

Keywords

Comments

May be read as a symmetric triangular (T[n,k]=T[n,n-k]; k=0,...,n; n=0,1,...) or square array (A[n,r]=A[r,n]=T[n+r,r], read by antidiagonals). - M. F. Hasler, Nov 04 2012

Crossrefs

Cf. analog triangles for other negative q=-2,...,-15: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015117 (q=-7), A015118 (q=-8), A015121 (q=-9), A015123 (q=-10), A015124 (q=-11), A015125 (q=-12), A015129 (q=-13), A015133 (q=-15). - M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24: A022166 (q=2), A022167 (q=3), A022168, A022169, A022170, A022171, A022172, A022173, A022174 (q=10), A022175, A022176, A022177, A022178, A022179, A022180, A022181, A022182, A022183, A022184 (q=20), A022185, A022186, A022187, A022188. - M. F. Hasler, Nov 05 2012

Programs

  • PARI
    T015132(n, k, q=-14)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012

A015356 Gaussian binomial coefficient [ n,8 ] for q=-2.

Original entry on oeis.org

1, 171, 58311, 13275471, 3624203583, 899790907743, 233988483199263, 59438516325245343, 15275698695588053151, 3902985682508407194271, 1000137219716325891620511, 255910660218571393553843871
Offset: 8

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,8] for q=-3..-13: A015357, A015359, A015360, A015361, A015363, A015364, A015365, A015367, A015368, A015369, A015370. - M. F. Hasler, Nov 03 2012
Diagonal k=8 of the triangular array A015109. See there for further references and programs. - M. F. Hasler, Nov 04 2012

Programs

  • Magma
    r:=8; q:=-2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 02 2012
    
  • Mathematica
    Table[QBinomial[n, 8, -2], {n, 8, 20}] (* Vincenzo Librandi, Nov 02 2012 *)
  • PARI
    A015356(n, r=8, q=-2)=prod(i=1, r, (q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
  • Sage
    [gaussian_binomial(n,8,-2) for n in range(8,20)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..8} ((-2)^(n-i+1)-1)/((-2)^i-1). - M. F. Hasler, Nov 03 2012
G.f.: -x^8 / ( (x-1)*(64*x-1)*(128*x+1)*(2*x+1)*(8*x+1)*(32*x+1)*(16*x-1)*(4*x-1)*(256*x-1) ). - R. J. Mathar, Sep 02 2016

A015371 Gaussian binomial coefficient [ n,9 ] for q=-2.

Original entry on oeis.org

1, -341, 232903, -105970865, 57881286463, -28735427761313, 14946527496991519, -7593183562134412385, 3902985682508407194271, -1994425683761796076272481, 1022146087305755916943130783, -523082886040328458081329117025
Offset: 9

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Diagonal k=9 of the triangular array A015109. See there for further references and programs. - M. F. Hasler, Nov 04 2012
Cf. Gaussian binomial coefficients [n,9] for q=-2..-13: A015375, A015376, A015377, A015378, A015379, A015380, A015381, A015382, A015383, A015384, A015385. - Vincenzo Librandi, Nov 04 2012

Programs

  • Magma
    r:=9; q:=-2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
  • Mathematica
    Table[QBinomial[n, 9, -2],{n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
  • Sage
    [gaussian_binomial(n,9,-2) for n in range(9,21)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..9} ((-2)^(n-i+1)-1)/((-2)^i-1). - Vincenzo Librandi, Nov 04 2012
G.f.: -x^9 / ( (x-1)*(512*x+1)*(64*x-1)*(128*x+1)*(2*x+1)*(8*x+1)*(32*x+1)*(16*x-1)*(4*x-1)*(256*x-1) ). - R. J. Mathar, Sep 02 2016

A015305 Gaussian binomial coefficient [ n,5 ] for q = -2.

Original entry on oeis.org

1, -21, 903, -25585, 875007, -27125217, 882215391, -28005209505, 899790907743, -28735427761313, 920460637644639, -29439916001972385, 942314556807454559, -30150270336284213409, 964869381941043396447, -30874848551033891160225
Offset: 5

Views

Author

Olivier Gérard, Dec 11 1999

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Diagonal k=5 of the triangular array A015109. See there for further references and programs. - M. F. Hasler, Nov 04 2012

Programs

  • GAP
    List([5..25], n-> (1 -11*(-2)^(n-4) +55*(-2)^(2*n-7) -55*(-2)^(3*n-9) +11*(-2)^(4*n- 10) -(-2)^(5*n-10))/40095 ); # G. C. Greubel, Sep 21 2019
  • Magma
    [(1 -11*(-2)^(n-4) +55*(-2)^(2*n-7) -55*(-2)^(3*n-9) +11*(-2)^(4*n-10) -(-2)^(5*n-10))/40095: n in [5..25]]; // G. C. Greubel, Sep 21 2019
    
  • Maple
    seq((1 -11*(-2)^(n-4) +55*(-2)^(2*n-7) -55*(-2)^(3*n-9) +11*(-2)^(4*n- 10) -(-2)^(5*n-10))/40095, n=5..25); # G. C. Greubel, Sep 21 2019
  • Mathematica
    Table[QBinomial[n, 5, -2], {n, 5, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
  • PARI
    a(n) = (1 -11*(-2)^(n-4) +55*(-2)^(2*n-7) -55*(-2)^(3*n-9) +11*(-2)^(4*n- 10) -(-2)^(5*n-10))/40095 \\ G. C. Greubel, Sep 21 2019
    
  • Sage
    [gaussian_binomial(n,5,-2) for n in range(5,21)] # Zerinvary Lajos, May 27 2009
    

Formula

A015305(n) = T[n,5], where T is the triangular array A015109. - M. F. Hasler, Nov 04 2012
G.f.: x^5/((1-x)*(1+2*x)*(1-4*x)*(1+8*x)*(1-16*x)*(1+32*x)). - R. J. Mathar, Aug 03 2016
From G. C. Greubel, Sep 21 2019: (Start)
a(n) = (1 -11*(-2)^(n-4) +55*(-2)^(2*n-7) -55*(-2)^(3*n-9) +11*(-2)^(4*n- 10) -(-2)^(5*n-10))/40095.
E.g.f.: (11*exp(16*x) - 440 + 1024*exp(x) - 704*exp(-2*x) + 110*exp(-8*x) - exp(-32*x))/41057280. (End)

A015266 Gaussian binomial coefficient [ n,3 ] for q = -2.

Original entry on oeis.org

1, -5, 55, -385, 3311, -25585, 208335, -1652145, 13275471, -105970865, 848699215, -6785865905, 54301841231, -434355079345, 3475079247695, -27799679551665, 222401254176591, -1779194762447025, 14233619183613775
Offset: 3

Views

Author

Olivier Gérard, Dec 11 1999

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Diagonal k=3 of the triangular array A015109. See there for further references and programs. - M. F. Hasler, Nov 04 2012

Programs

  • Magma
    [(1/81)*(24*4^n-6*(-2)^n+64*(-8)^n-1): n in [0..20]]; // Vincenzo Librandi, Aug 23 2011
  • Mathematica
    Table[QBinomial[n, 2, -2], {n, 3, 25}] (* G. C. Greubel, Jul 31 2016 *)
  • Sage
    [gaussian_binomial(n,3,-2) for n in range(3,22)] # Zerinvary Lajos, May 27 2009
    

Formula

From Paul Barry, Jul 12 2005: (Start)
G.f.: x^3/((1-2*x-8*x^2)*(1+7*x-8*x^2));
a(n) = -5*a(n-1) + 30*a(n-2) + 40*a(n-3) - 64*a(n-4);
a(n+3) = (-1)^n*J(n)*J(n+1)*J(n+2)/3, where J(n)=A001045(n). (End)
a(n) = T015109(n,3), where T015109 is the triangular array defined by A015109. - M. F. Hasler, Nov 04 2012

A015287 Gaussian binomial coefficient [ n,4 ] for q = -2.

Original entry on oeis.org

1, 11, 231, 3311, 56287, 875007, 14208447, 225683007, 3624203583, 57881286463, 926949282623, 14824402656063, 237244744338239, 3795481554332479, 60731179948567359, 971671079497526079, 15546959673214593855
Offset: 4

Views

Author

Olivier Gérard, Dec 11 1999

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Diagonal k=4 in the triangular array A015109. See there for further references and programs. - M. F. Hasler, Nov 04 2012

Programs

  • Magma
    r:=4; q:=-2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 02 2016
  • Mathematica
    Table[QBinomial[n, 4, -2], {n, 4, 20}] (* Vincenzo Librandi, Oct 28 2012 *)
  • Sage
    [gaussian_binomial(n,4,-2) for n in range(4,21)] # Zerinvary Lajos, May 27 2009
    

Formula

G.f.: x^4/((1-x)*(1+2*x)*(1-4*x)*(1+8*x)*(1-16*x)). - Bruno Berselli, Oct 30 2012
a(n) = (1 - 2^(2n-5)*(15-2^(2n-1)) - (-1)^n*5*2^(n-3)*(1-2^(2n-3)))/1215. - Bruno Berselli, Oct 30 2012
A015287(n) = T[n,4], where T is the triangular array A015109. - M. F. Hasler, Nov 04 2012
Previous Showing 11-20 of 30 results. Next