cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A015470 q-Fibonacci numbers for q=12, scaling a(n-2).

Original entry on oeis.org

0, 1, 1, 13, 157, 22621, 3278173, 5632106845, 9794204234077, 201818365309759837, 4211530365904119214429, 1041342647528423104910537053, 260767900948768868884822059725149, 773726564635922870118341112574642827613
Offset: 0

Views

Author

Keywords

Crossrefs

q-Fibonacci numbers: A000045 (q=1), A015459 (q=2), A015460 (q=3), A015461 (q=4),
A015462 (q=5), A015463 (q=6), A015464 (q=7), A015465 (q=8), A015467 (q=9), A015468 (q=10), A015469 (q=11), this sequence (q=12).

Programs

  • GAP
    q:=12;; a:=[0,1];; for n in [3..20] do a[n]:=a[n-1]+q^(n-3)*a[n-2]; od; a; # G. C. Greubel, Dec 17 2019
  • Magma
    [0] cat[n le 2 select 1 else Self(n-1) + Self(n-2)*(12^(n-2)): n in [1..15]]; // Vincenzo Librandi, Nov 09 2012
    
  • Maple
    q:=12; seq(add((product((1-q^(n-j-1-k))/(1-q^(k+1)), k=0..j-1))*q^(j^2), j = 0..floor((n-1)/2)), n = 0..20); # G. C. Greubel, Dec 17 2019
  • Mathematica
    RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-1]+a[n-2]*12^(n-2)},  a, {n, 60}] (* Vincenzo Librandi, Nov 09 2012 *)
    F[n_, q_]:= Sum[QBinomial[n-j-1, j, q]*q^(j^2), {j, 0, Floor[(n-1)/2]}];
    Table[F[n, 12], {n, 0, 20}] (* G. C. Greubel, Dec 17 2019 *)
  • PARI
    q=12; m=20; v=concat([0,1], vector(m-2)); for(n=3, m, v[n]=v[n-1]+q^(n-3)*v[n-2]); v \\ G. C. Greubel, Dec 17 2019
    
  • Sage
    def F(n,q): return sum( q_binomial(n-j-1, j, q)*q^(j^2) for j in (0..floor((n-1)/2)))
    [F(n,12) for n in (0..20)] # G. C. Greubel, Dec 17 2019
    

Formula

a(n) = a(n-1) + 12^(n-2)*a(n-2).

A280340 a(n) = a(n-1) + 10^n * a(n-2) with a(0) = 1 and a(1) = 1.

Original entry on oeis.org

1, 1, 101, 1101, 1011101, 111111101, 1011212111101, 1112122222111101, 101122323232322111101, 1112223344434333322111101, 1011224344546565545343322111101, 111223345667777878776655443322111101, 1011224455769911213121200887756443322111101
Offset: 0

Views

Author

Seiichi Manyama, Dec 31 2016

Keywords

Comments

The Rogers-Ramanujan continued fraction is defined by R(q) = q^(1/5)/(1+q/(1+q^2/(1+q^3/(1+ ... )))). The limit of a(n)/A015468(n+2) is 10^(-1/5) * R(10).
a(n) has A004652(n+1) digits. The last n digits are the same as the last n digits of a(n-1). - Robert Israel, Jan 12 2017

Examples

			1/1 = a(0)/A015468(2).
1/(1+10/1) = 1/11 = a(1)/A015468(3).
1/(1+10/(1+10^2/1)) = 101/111 = a(2)/A015468(4).
1/(1+10/(1+10^2/(1+10^3/1))) = 1101/11111 = a(3)/A015468(5).
		

Crossrefs

Cf. similar sequences with the recurrence a(n-1) + q^n * a(n-2) for n>1, a(0)=1 and a(1)=1: A280294 (q=2), A279543 (q=3), this sequence (q=10).

Programs

  • Maple
    A[0]:= 1: A[1]:= 1:
    for n from 2 to 20 do A[n]:= A[n-1]+10^n*A[n-2] od:
    seq(A[i],i=0..20); # Robert Israel, Jan 12 2017
  • Mathematica
    RecurrenceTable[{a[0]==a[1]==1,a[n]==a[n-1]+10^n a[n-2]},a,{n,15}] (* Harvey P. Dale, Jul 12 2020 *)

Formula

a(n) a(n-3) = 10 a(n-2) a(n-1) - 10 a(n-2)^2 + a(n-1) a(n-3). - Robert Israel, Jan 12 2017

A136680 Triangle T(n, k) = f(k) for k < n+1, otherwise 0, where f(k) = f(k-1) + k^(k-2)*f(k-2) with f(0) = 0 and f(1) = 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 4, 20, 1, 1, 4, 20, 520, 1, 1, 4, 20, 520, 26440, 1, 1, 4, 20, 520, 26440, 8766080, 1, 1, 4, 20, 520, 26440, 8766080, 6939853440, 1, 1, 4, 20, 520, 26440, 8766080, 6939853440, 41934828744960, 1, 1, 4, 20, 520, 26440, 8766080, 6939853440, 41934828744960, 694027278828744960
Offset: 1

Views

Author

Roger L. Bagula, Apr 06 2008

Keywords

Examples

			Triangle begins as:
  1;
  1, 1;
  1, 1, 4;
  1, 1, 4, 20;
  1, 1, 4, 20, 520;
  1, 1, 4, 20, 520, 26440;
  1, 1, 4, 20, 520, 26440, 8766080;
  1, 1, 4, 20, 520, 26440, 8766080, 6939853440;
  1, 1, 4, 20, 520, 26440, 8766080, 6939853440, 41934828744960;
		

Crossrefs

Programs

  • Magma
    function f(k)
      if k lt 2 then return k;
      else return f(k-1) + k^(k-2)*f(k-2);
      end if; return f;
    end function;
    A136680:= func< n,k | k le n select f(k) else 0 >;
    [A136680(n,k): k in [1..n], n in [1..14]]; // G. C. Greubel, Dec 01 2022
    
  • Mathematica
    T[k_]:= T[k]= If[k<2, k, T[k-1] + n^(k-2)*T[k-2]];
    Table[T[k], {n,10}, {k,n}]//Flatten
  • SageMath
    @CachedFunction
    def f(k):
        if (k<2): return k
        else: return f(k-1) + k^(k-2)*f(k-2)
    def A136680(n,k): return f(k) if (k < n+1) else 0
    flatten([[A136680(n,k) for k in range(1,n+1)] for n in range(1,15)]) # G. C. Greubel, Dec 01 2022

Formula

T(k) = T(k-1) + n^(k-2)*T(k-2), with T(0) = 0, T(1) = 1.
T(n, k) = f(k) for k < n+1, otherwise 0, where f(k) = f(k-1) + k^(k-2)*f(k-2) with f(0) = 0 and f(1) = 1. - G. C. Greubel, Dec 01 2022

Extensions

Edited by G. C. Greubel, Dec 01 2022
Previous Showing 11-13 of 13 results.