cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A055009 Smallest composite number x such that sigma(x + prime(n)#) = sigma(x) + prime(n)#, where prime(n)# = A002110(n) and sigma is A000203.

Original entry on oeis.org

434, 104, 44, 176, 2924, 34256, 83509, 539081, 254963216, 14600541172, 201346999808
Offset: 1

Views

Author

Labos Elemer, May 31 2000

Keywords

Comments

a(12) <= 14841476269604. a(13) <= 314064788156864. - Donovan Johnson, Mar 17 2013

Examples

			a(7) = 83509 = 37*37*61, sigma(83509)+510510 = 87234+510510 = sigma(83509+510510) = sigma(594019) = 597744.
		

Crossrefs

The prime solutions for particular sigma(x+primorial) = sigma(x)+primorial equations are in A049481-A049485.

Programs

  • PARI
    a(n)=my(P=prod(i=1,n,prime(i)),x=4); while(isprime(x) || sigma(x+P) != sigma(x)+P, x++); x \\ Charles R Greathouse IV, Feb 14 2013

Extensions

a(9)-a(10) from Donovan Johnson, Oct 15 2008
a(11) from Donovan Johnson, Mar 08 2013

A063679 Numbers k such that (3^k - 7)/2 is prime.

Original entry on oeis.org

4, 12, 18, 26, 106, 164, 246, 956, 2554, 3350, 6496, 8706, 9008, 15398, 15490, 20408, 39240, 41060, 41842, 58358, 60346, 82214, 134972, 194014, 344204, 587712, 778070
Offset: 1

Views

Author

Jud McCranie, Jul 28 2001

Keywords

Comments

x = 3^k is a solution to sigma(x - 7) = sigma(x) - 7 when (3^k - 7)/2 is prime.
a(28) > 10^6

Examples

			(3^4 - 7)/2 = 37 is prime, so 4 is in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory):i := 0:x := 1:while i < 1000 do i := i+1:x := 3*x: if isprime((x-7)/2) then print(i):fi:od:
  • Mathematica
    Do[ If[ PrimeQ[ (3^n - 7)/2 ], Print[n] ], {n, 2, 5500} ]
    Select[Range[2, 10000], PrimeQ[((3^# - 7)/2)] &] (* Vincenzo Librandi, Sep 30 2012 *)
  • PARI
    is(n)=ispseudoprime((3^n-7)/2) \\ Charles R Greathouse IV, May 22 2017

Extensions

More terms from Robert G. Wilson v, Aug 02 2001
0, 1 removed and a(11)-a(13) added from Vincenzo Librandi, Sep 30 2012
a(14)-a(17) from Seth A. Troisi, Oct 17 2022
a(17) corrected, a(18)-a(25) from Seth A. Troisi, Oct 29 2022
a(26)-a(27) from Seth A. Troisi, Nov 28 2022

A056774 Composite n such that phi(n+2) = phi(n)+2.

Original entry on oeis.org

6, 12, 14, 18, 20, 44, 62, 92, 116, 164, 212, 254, 332, 356, 452, 524, 692, 716, 764, 932, 956, 1004, 1124, 1172, 1436, 1676, 1724, 1772, 1964, 2036, 2372, 2564, 2612, 2636, 2732, 2876, 2972, 3044, 3236, 3644, 3812, 4052, 4076, 4124, 4196, 4412, 4892
Offset: 1

Views

Author

Labos Elemer, Aug 17 2000

Keywords

Comments

Below 100000 no common composite solutions with sigma(n+2)=sigma(n)+2, while prime solutions are common.
phi(x)+2=phi(x+2) is equivalent to cototient(x+2)=cototient(x), so also defines closest numbers with identical value of cototients (A051953), either primes or composites.

Examples

			n=254, phi(254+2) = phi(256) = 128 = phi(254)+2 = 126+2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5000],CompositeQ[#]&&EulerPhi[#]+2==EulerPhi[#+2]&] (* Harvey P. Dale, Jul 10 2017 *)
  • PARI
    isok(n) = !isprime(n) && (eulerphi(n+2) == eulerphi(n)+2); \\ Michel Marcus, Aug 30 2019

A063680 Solutions to sigma(k) + 7 = sigma(k+7).

Original entry on oeis.org

74, 531434, 387420482, 2541865828322
Offset: 1

Views

Author

Jud McCranie, Jul 28 2001

Keywords

Comments

No other solutions < 4290000000. Sequence A063679 shows how to generate more solutions, but there may be solutions other than those produced by A063679.
No others < 10^17. - Seth A. Troisi, Oct 25 2022
k or k+7 must be a square or twice a square (A028982). See comment in A015886. - Seth A. Troisi, Oct 26 2022
From Jon E. Schoenfield, Oct 26 2022: (Start)
Each of the first 4 terms of the sequence is of the form k = 9^j - 7:
74 = 9^2 - 7,
531434 = 9^6 - 7,
387420482 = 9^9 - 7,
2541865828322 = 9^13 - 7.
The next terms of this form are 9^53 - 7 and 9^82 - 7.
Does the sequence contain any terms that are not of this form?
(End)
No other terms < 2.7*10^15. - Jud McCranie, Jul 27 2025

Examples

			sigma(74) + 7 = 121 = sigma(74+7), so 74 is in the sequence.
		

Crossrefs

Programs

  • PARI
    isok(k) = sigma(k) + 7 == sigma(k+7); \\ Michel Marcus, Oct 25 2022

Extensions

a(4) from Seth A. Troisi, Oct 24 2022

A084293 a(n) = 2n + A054905(n).

Original entry on oeis.org

436, 305635361, 110, 35, 195566, 77, 26, 55, 38, 76, 938, 104, 212308, 85, 74, 106677, 86, 161
Offset: 1

Views

Author

Labos Elemer, May 26 2003

Keywords

Comments

The sequence begins 436, 305635361, 110, 35, 195566, 77, 26, 55, 38, 76, 938, 104, 212308, 85, 74, 106677, 86, 161, ?, 91, 87, 92, 122, 111, 1585396, 145, 94, 76627, 10283, 159, 772, 133, 122, 412, 194, 142, 964, 205, 374, 925, 6725, 209, ?, 1015, 178, ?, ?, 206, 146, ?, ..., where the other missing terms (designated by "?") are unknown, if they exist (see also A206768).

Examples

			To terms of A054905, where sigma(x+2n)=sigma(x)+2n replacing x+2n=y,x=y-2n, we get sigma(y)-2n=sigma(y-2n);
For several analogous sequences, the corresponding "mirror-solutions" can be easily constructed. See: e.g. A015913-A015918; A050507, A054799, A054903-A054906; A054982-A054987; A059118; A055009, A055458, A063500, etc.
		

Crossrefs

Cf. A054905.

Formula

Composite x satisfying sigma(x-2n) = sigma(x) - 2n.

A056773 Composite n such that phi(n+4) = phi(n)+4.

Original entry on oeis.org

12, 18, 24, 28, 36, 40, 66, 88, 124, 184, 232, 328, 424, 508, 664, 712, 904, 1048, 1384, 1432, 1528, 1864, 1912, 2008, 2248, 2344, 2586, 2872, 3352, 3448, 3544, 3928, 4072, 4744, 5128, 5224, 5272, 5464, 5752, 5944, 6088, 6472, 7288, 7624, 8104, 8152, 8248
Offset: 1

Views

Author

Labos Elemer, Aug 17 2000

Keywords

Comments

Are all terms even? - Robert Israel, Apr 28 2020

Examples

			24 is in the sequence because 24 is composite and phi(24)+4 = 12 = phi(24+4).
		

Crossrefs

A001838, A015913, A055458. Composites in A056772. Primes in A056772 are A023200.

Programs

  • Maple
    filter:= n -> not isprime(n) and numtheory:-phi(n+4)=numtheory:-phi(n)+4:
    select(filter, [$1..10000]); # Robert Israel, Apr 28 2020
  • Mathematica
    Select[Range[9000],CompositeQ[#]&&EulerPhi[#]+4==EulerPhi[#+4]&] (* Harvey P. Dale, Feb 12 2015 *)
  • PARI
    is(n)=!isprime(n) && eulerphi(n+4)==eulerphi(n)+4 \\ Charles R Greathouse IV, Apr 28 2020

Extensions

Edited by Robert Israel, Apr 28 2020

A084292 a(n) = 6n + A054904(n).

Original entry on oeis.org

110, 77, 38, 104, 74, 161, 87, 111, 94, 159, 122, 142, 374, 209, 178, 206, 206, 253, 326, 302, 206, 302, 471, 249, 519, 341, 346, 303, 354, 481, 542, 377, 2057, 533, 386, 411, 5138, 662, 846, 527, 386, 437, 1034, 519, 794, 689, 626, 493, 566, 629, 873, 527, 638
Offset: 1

Views

Author

Labos Elemer, May 26 2003

Keywords

Comments

Composite solutions y to sigma(y-6n) = sigma(y) - 6n. For terms x of A054904, where sigma(x+6n) = sigma(x) + 6n, replacing x+6n = y, x = y-6n, we get sigma(y) - 6n = sigma(y-6n).

Crossrefs

Cf. A000203 (sigma), A054904, A084293.
For several analogous sequences such corresponding "mirror-solutions" can be easily constructed. See, e.g., A015913-A015918, A050507, A054799, A054903-A054906, A054982-A054987, A059118, A055009, A055458, A063500, etc.

A055036 Min[x] composite zero site for sigma(x+6^n) - sigma(x) - 6^n.

Original entry on oeis.org

104, 125, 195, 415, 2743, 2935, 3535, 19735, 22645, 108703, 977353, 1921033, 2523433, 2425175, 4227575, 85969345, 32606935, 224917033, 1362833713, 716210677, 1557843865, 6226853857, 20369543065
Offset: 1

Views

Author

Labos Elemer, Jun 01 2000

Keywords

Examples

			n = 6: d = 6^6 = 46656, a(n) = a(6) = 2935 because sigma(2935) + 46656 = 1 + 5 + 587 + 2935 + 46656 = sigma(2935 + 46656) = sigma(49591) = 1 + 101 + 491 + 49591 = 50184.
		

Crossrefs

Programs

  • Mathematica
    L = {}; Do[i = 1; While[ ! ((Plus @@ Divisors[i + 6^j] == 6^j + Plus @@ Divisors[i]) && ! PrimeQ[i]), i++ ]; L = Append[L, i], {j, 1, 11}]; L (from Vit Planocka)

Formula

a(n) = Min(x) solution for A000203(x+A000400(n)) = A000203(x) + A000400(n) Diophantine equation.

Extensions

One more term from Vit Planocka (planocka(AT)mistral.cz), Sep 23 2003
a(12)-a(23) from Donovan Johnson, Nov 30 2008
Previous Showing 11-18 of 18 results.