cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A244453 Prime factors of 2^A054723(n)-1, ordered by increasing n, then by increasing size of the factors.

Original entry on oeis.org

23, 89, 47, 178481, 233, 1103, 2089, 223, 616318177, 13367, 164511353, 431, 9719, 2099863, 2351, 4513, 13264529, 6361, 69431, 20394401, 179951, 3203431780337, 193707721, 761838257287, 228479, 48544121, 212885833
Offset: 1

Views

Author

Felix Fröhlich, Jun 28 2014

Keywords

Comments

Subsequence of A060443.
Prime factors of composite Mersenne numbers; A089162 with the Mersenne primes A000668 removed. - Jens Kruse Andersen, Jul 11 2014

Examples

			A054723(1) = 11. 2^11-1 = 2047 = 23*89. - _Jens Kruse Andersen_, Jul 11 2014
Triangle begins:
23, 89;
47, 178481;
233, 1103, 2089;
223, 616318177;
13367, 164511353;
431, 9719, 2099863;
2351, 4513, 13264529;
6361, 69431, 20394401;
		

Crossrefs

Programs

  • Mathematica
    Map[FactorInteger, Select[2^Prime@Range@20 - 1, CompositeQ]][[All, All, 1]] // Flatten (* Michael De Vlieger, Nov 20 2018 *)
  • PARI
    forprime(n=1, 100, m=2^n-1; if(!isprime(m), f=factor(m); for(i=1, #f~, print1(f[i,1]", ")))) \\ Jens Kruse Andersen, Jul 11 2014

A016048 Least k such that (2*p_n)*k + 1 | Mersenne(p_n), p_n = n-th prime, n >= 2.

Original entry on oeis.org

1, 3, 9, 1, 315, 3855, 13797, 1, 4, 34636833, 3, 163, 5, 25, 60, 1525, 18900352534538475, 1445580, 1609, 3, 17, 1, 3477359660913989536233495, 59, 36793758459, 12379533, 758220919762679268184943973309, 3421967, 15
Offset: 2

Views

Author

Keywords

Comments

M(p_n) = 2^p_n - 1 = (2*p_n)*j + 1 = [(2*p_n)*k_1 + 1] ... [(2*p_n)*k_i + 1], n >= 2 (i.e., odd prime p_n), i >= 1. Then k = Min(k_1, ..., k_i).

Crossrefs

Formula

a(n) = (A016047(n) - 1) / (2*A000040(n)). - Jeppe Stig Nielsen, Jul 18 2014

Extensions

Definition edited, comment added by Daniel Forgues, Oct 06 2009

A136034 a(n) = smallest number k such that number of distinct prime factors of 2^k-1 is exactly n.

Original entry on oeis.org

1, 2, 4, 8, 12, 20, 24, 40, 36, 48, 88, 60, 72, 150, 132, 120, 156, 144, 200, 204, 210, 180, 324, 476, 288, 300, 432, 396, 480, 360, 468, 576, 700, 504, 420, 648, 540, 660, 792, 720
Offset: 0

Views

Author

Artur Jasinski, Dec 11 2007

Keywords

Comments

First occurrence of n in A046800.

Crossrefs

Programs

  • Mathematica
    With[{pn1=PrimeNu[2^Range[800]-1]},Table[Position[pn1,n,1,1],{n,0,40}]]//Flatten (* Harvey P. Dale, Jan 10 2025 *)
  • PARI
    a(n) = my(k=1); while (omega(2^k-1) != n, k++); k; \\ Michel Marcus, Jan 09 2023

Extensions

More terms from Julián Aguirre, Feb 04 2013
a(31)-a(39) from Chai Wah Wu, Oct 03 2019
a(0) = 1 inserted by Michel Marcus, Jan 09 2023

A236485 Primes p such that gpf(lpf(m)-1) = gpf(gpf(m)-1), where m = 2^p-1 is Mersenne composite.

Original entry on oeis.org

11, 29, 53
Offset: 1

Views

Author

Thomas Ordowski, Jan 27 2014

Keywords

Comments

Conjecture: finitely many such p and gpf(lpf(m)-1) = gpf(gpf(m)-1) = p.
No more terms found up to p = 1277, 1277 being the first prime for which the complete factorization of 2^p-1 is not currently known (see GIMPS link). - Michel Marcus, Jan 29 2014

Crossrefs

Programs

  • PARI
    isok(p) = isprime(p) && (mc = (2^p-1)) && (mcpf = (factor(2^p-1))[, 1]) && (length(mcpf) > 1) && (gpf = vecmax(mcpf)) && (lpf = vecmin(mcpf)) && (vecmax(factor(gpf-1)[, 1]) == vecmax(factor(lpf-1)[, 1])); \\ Michel Marcus, Jan 27 2014
Previous Showing 11-14 of 14 results.