cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 54 results. Next

A125181 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n whose ascent lengths form the k-th partition of the integer n; the partitions of n are ordered in the "Mathematica" ordering.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 2, 6, 1, 1, 5, 5, 10, 10, 10, 1, 1, 6, 6, 15, 3, 30, 20, 5, 30, 15, 1, 1, 7, 7, 21, 7, 42, 35, 21, 21, 105, 35, 35, 70, 21, 1, 1, 8, 8, 28, 8, 56, 56, 4, 56, 28, 168, 70, 28, 84, 168, 280, 56, 14, 140, 140, 28, 1, 1, 9, 9, 36, 9, 72, 84, 9, 72, 36, 252, 126, 36
Offset: 1

Views

Author

Emeric Deutsch, Nov 23 2006

Keywords

Comments

Equivalently, T(n,k) is the number of ordered trees with n edges whose node degrees form the k-th partition of the integer n.
Also the number of non-crossing set partitions whose block sizes are the parts of the n-th integer partition in graded Mathematica ordering. - Gus Wiseman, Feb 15 2019
For relations to Lagrange inversion through shifted reciprocals of a function, refined Narayana numbers, non-crossing partitions, trees, and other lattice paths, see A134264 and A091867. - Tom Copeland, Nov 01 2014

Examples

			Example: T(5,3)=5 because the 3rd partition of 5 is [3,2] and we have (UU)DD(UUU)DDD, (UUU)DDD(UU)DD, (UU)D(UUU)DDDD, (UUU)D(UU)DDDD and (UUU)DD(UU)DDD; here U=(1,1), D=(1,-1) and the ascents are shown between parentheses.
Triangle begins:
  1
  1   1
  1   3   1
  1   4   2   6   1
  1   5   5  10  10  10   1
  1   6   6  15   3  30  20   5  30  15   1
  1   7   7  21   7  42  35  21  21 105  35  35  70  21   1
Row 4 counts the following non-crossing set partitions:
  {{1234}}  {{1}{234}}  {{12}{34}}  {{1}{2}{34}}  {{1}{2}{3}{4}}
            {{123}{4}}  {{14}{23}}  {{1}{23}{4}}
            {{124}{3}}              {{12}{3}{4}}
            {{134}{2}}              {{1}{24}{3}}
                                    {{13}{2}{4}}
                                    {{14}{2}{3}}
		

References

  • R. P. Stanley, Enumerative Combinatorics Vol. 2, Cambridge University Press, Cambridge, 1999; Theorem 5.3.10.

Crossrefs

Programs

  • Maple
    with(combinat): for n from 1 to 9 do p:=partition(n): for q from 1 to numbpart(n) do m:=convert(p[numbpart(n)+1-q],multiset): k:=nops(p[numbpart(n)+1-q]): s[n,q]:=n!/(n-k+1)!/product(m[j][2]!,j=1..nops(m)) od: od: for n from 1 to 9 do seq(s[n,q],q=1..numbpart(n)) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, i, k) `if`(n=0, [k!], `if`(i<1, [],
          [seq(map(x->x*j!, b(n-i*j, i-1, k-j))[], j=0..n/i)]))
        end:
    T:= proc(n) local l, m;
          l:= b(n, n, n+1); m:=nops(l);
          seq(n!/l[m-i], i=0..m-1)
        end:
    seq(T(n), n=1..10);  # Alois P. Heinz, May 25 2013
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, {k!}, If[i<1, {}, Flatten @ Table[Map[#*j! &, b[n-i*j, i-1, k-j]], {j, 0, n/i}]]]; T[n_] := Module[{l, m}, l = b[n, n, n+1]; m = Length[l]; Table[n!/l[[m-i]], {i, 0, m-1}]]; Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, May 26 2015, after Alois P. Heinz *)
    Table[Binomial[Total[y],Length[y]-1]*(Length[y]-1)!/Product[Count[y,i]!,{i,Max@@y}],{y,Join@@Table[IntegerPartitions[n],{n,1,8}]}] (* Gus Wiseman, Feb 15 2019 *)
  • SageMath
    def C(p):
        n = sum(p); l = n - len(p) + 1
        def f(x): return factorial(len(list(filter(lambda y: y == x, p))))
        return factorial(n) // (factorial(l) * prod(f(x) for x in set(p)))
    def row(n): return list(C(p) for p in Partitions(n))
    for n in range(1, 9): print(row(n))  # Peter Luschny, Jul 14 2022

Formula

Row n has A000041(n) terms (equal to the number of partitions of n).
Row sums yield the Catalan numbers (A000108).
Given a partition p = [a(1)^e(1), ..., a(j)^e(j)] into k parts (e(1) +...+ e(j) = k), the number of Dyck paths whose ascent lengths yield the partition p is n!/[(n-k+1)!e(1)!e(2)! ... e(j)! ]. - Franklin T. Adams-Watters

A324327 Number of topologically connected chord graphs covering {1,...,n}.

Original entry on oeis.org

1, 0, 1, 0, 1, 11, 257
Offset: 0

Views

Author

Gus Wiseman, Feb 22 2019

Keywords

Comments

A graph is topologically connected if the graph whose vertices are the edges and whose edges are crossing pairs of edges is connected, where two edges cross each other if they are of the form {{x,y},{z,t}} with x < z < y < t or z < x < t < y.
Covering means there are no isolated vertices.

Examples

			The a(0) = 1 through a(5) = 11 graphs:
  {}  {{12}}  {{13}{24}}  {{13}{14}{25}}
                          {{13}{24}{25}}
                          {{13}{24}{35}}
                          {{14}{24}{35}}
                          {{14}{25}{35}}
                          {{13}{14}{24}{25}}
                          {{13}{14}{24}{35}}
                          {{13}{14}{25}{35}}
                          {{13}{24}{25}{35}}
                          {{14}{24}{25}{35}}
                          {{13}{14}{24}{25}{35}}
		

Crossrefs

Cf. A000108, A000699 (the case with disjoint edges), A001764, A002061, A007297, A016098, A054726, A099947, A136653 (the case with set-theoretical connectedness also), A268814.
Cf. A324167, A324169 (non-crossing covers), A324172, A324173, A324323, A324328 (non-covering case).

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    crosscmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],croXQ]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],Length[crosscmpts[#]]<=1]&]],{n,0,5}]

Formula

Inverse binomial transform of A324328.

A326248 Number of crossing, nesting set partitions of {1..n}.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 28, 252, 1890, 13020, 86564, 571944, 3826230, 26233662, 185746860, 1364083084, 10410773076, 82609104802, 681130756224, 5829231836494, 51711093240518, 474821049202852, 4506533206814480, 44151320870760216, 445956292457725714
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2019

Keywords

Comments

A set partition is crossing if it has two blocks of the form {...x,y...}, {...z,t...} where x < z < y < t or z < x < t < y, and nesting if it has two blocks of the form {...x,y...}, {...z,t...} where x < z < t < y or z < x < y < t.

Examples

			The a(5) = 2 set partitions:
  {{1,4},{2,3,5}}
  {{1,3,4},{2,5}}
		

Crossrefs

Crossing and nesting set partitions are (both) A016098.
Crossing, capturing set partitions are A326246.
Nesting, non-crossing set partitions are A122880.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,y_,_},_,{_,z_,t_,_},_}/;x_,{_,x_,y_,_},_,{_,z_,t_,_},_}/;x
    				

Formula

a(n) = A000110(n) - 2*A000108(n) + A001519(n). - Christian Sievers, Oct 16 2024

Extensions

a(11) and beyond from Christian Sievers, Oct 16 2024

A324328 Number of topologically connected chord graphs on a subset of {1,...,n}.

Original entry on oeis.org

1, 1, 2, 4, 8, 27, 354
Offset: 0

Views

Author

Gus Wiseman, Feb 22 2019

Keywords

Comments

A graph is topologically connected if the graph whose vertices are the edges and whose edges are crossing pairs of edges is connected, where two edges cross each other if they are of the form {{x,y},{z,t}} with x < z < y < t or z < x < t < y.

Examples

			The a(0) = 1 through a(5) = 27 graphs:
  {}  {}  {}      {}      {}          {}
          {{12}}  {{12}}  {{12}}      {{12}}
                  {{13}}  {{13}}      {{13}}
                  {{23}}  {{14}}      {{14}}
                          {{23}}      {{15}}
                          {{24}}      {{23}}
                          {{34}}      {{24}}
                          {{13}{24}}  {{25}}
                                      {{34}}
                                      {{35}}
                                      {{45}}
                                      {{13}{24}}
                                      {{13}{25}}
                                      {{14}{25}}
                                      {{14}{35}}
                                      {{24}{35}}
                                      {{13}{14}{25}}
                                      {{13}{24}{25}}
                                      {{13}{24}{35}}
                                      {{14}{24}{35}}
                                      {{14}{25}{35}}
                                      {{13}{14}{24}{25}}
                                      {{13}{14}{24}{35}}
                                      {{13}{14}{25}{35}}
                                      {{13}{24}{25}{35}}
                                      {{14}{24}{25}{35}}
                                      {{13}{14}{24}{25}{35}}
		

Crossrefs

Cf. A000108, A000699, A001764, A002061, A007297, A016098, A054726 (non-crossing chord graphs), A099947, A136653, A268814.
Cf. A324168, A324169, A324172, A324173, A324323, A324327 (covering case).

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    crosscmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],croXQ]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[crosscmpts[#]]<=1&]],{n,0,5}]

Formula

Binomial transform of A324327.

A326257 MM-numbers of weakly nesting multiset partitions.

Original entry on oeis.org

49, 91, 98, 133, 147, 169, 182, 196, 203, 245, 247, 259, 266, 273, 294, 299, 301, 338, 343, 361, 364, 371, 377, 392, 399, 406, 427, 441, 455, 481, 490, 494, 497, 507, 518, 529, 532, 539, 546, 551, 553, 559, 588, 598, 602, 609, 623, 637, 665, 667, 676, 686, 689
Offset: 1

Views

Author

Gus Wiseman, Jun 21 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n.
A multiset partition is weakly nesting if it has two blocks of the form {...x,y...}, {...z,t...} where x <= z and t <= y or z <= x and y <= t.

Examples

			The sequence of terms together with their multiset multisystems begins:
   49: {{1,1},{1,1}}
   91: {{1,1},{1,2}}
   98: {{},{1,1},{1,1}}
  133: {{1,1},{1,1,1}}
  147: {{1},{1,1},{1,1}}
  169: {{1,2},{1,2}}
  182: {{},{1,1},{1,2}}
  196: {{},{},{1,1},{1,1}}
  203: {{1,1},{1,3}}
  245: {{2},{1,1},{1,1}}
  247: {{1,2},{1,1,1}}
  259: {{1,1},{1,1,2}}
  266: {{},{1,1},{1,1,1}}
  273: {{1},{1,1},{1,2}}
  294: {{},{1},{1,1},{1,1}}
  299: {{1,2},{2,2}}
  301: {{1,1},{1,4}}
  338: {{},{1,2},{1,2}}
  343: {{1,1},{1,1},{1,1}}
  361: {{1,1,1},{1,1,1}}
		

Crossrefs

MM-numbers of crossing multiset partitions are A324170.
MM-numbers of nesting multiset partitions are A324256.
MM-numbers of capturing multiset partitions are A326255.
Nesting set partitions are A016098.

Programs

  • Mathematica
    wknXQ[stn_]:=MatchQ[stn,{_,{_,x_,y_,_},_,{_,z_,t_,_},_}/;(x<=z&&y>=t)||(x>=z&&y<=t)]
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],wknXQ[primeMS/@primeMS[#]]&]

A194560 G.f.: Sum_{n>=1} G_n(x)^n where G_n(x) = x + x*G_n(x)^n.

Original entry on oeis.org

1, 2, 2, 4, 2, 10, 2, 20, 14, 49, 2, 217, 2, 438, 310, 1580, 2, 6352, 2, 18062, 7824, 58799, 2, 258971, 2532, 742915, 246794, 2729095, 2, 11154954, 2, 35779660, 8414818, 129644809, 242354, 531132915, 2, 1767263211, 300830821, 6593815523, 2, 26289925026, 2, 91708135773
Offset: 1

Views

Author

Paul D. Hanna, Aug 28 2011

Keywords

Comments

Number of Dyck n-paths with all ascents of equal length. - David Scambler, Nov 17 2011
From Gus Wiseman, Feb 15 2019: (Start)
Also the number of uniform (all blocks have the same size) non-crossing set partitions of {1,...,n}. For example, the a(3) = 2 through a(6) = 10 uniform non-crossing set partitions are:
{{123}} {{1234}} {{12345}} {{123456}}
{{1}{2}{3}} {{12}{34}} {{1}{2}{3}{4}{5}} {{123}{456}}
{{14}{23}} {{126}{345}}
{{1}{2}{3}{4}} {{156}{234}}
{{12}{34}{56}}
{{12}{36}{45}}
{{14}{23}{56}}
{{16}{23}{45}}
{{16}{25}{34}}
{{1}{2}{3}{4}{5}{6}}
(End)

Examples

			G.f.: A(x) = x + 2*x^2 + 2*x^3 + 4*x^4 + 2*x^5 + 10*x^6 + 2*x^7 + ...
where
A(x) = G_1(x) + G_2(x)^2 + G_3(x)^3 + G_4(x)^4 + G_5(x)^5 + ...
and G_n(x) = x + x*G_n(x)^n is given by:
G_n(x) = Sum_{k>=0} C(n*k+1,k)/(n*k+1)*x^(n*k+1),
G_n(x)^n = Sum_{k>=1} C(n*k,k)/(n*k-k+1)*x^(n*k);
the first few expansions of G_n(x)^n begin:
G_1(x) = x + x^2 + x^3 + x^4 + x^5 + ...
G_2(x)^2 = x^2 + 2*x^4 + 5*x^6 + 14*x^8 + ... + A000108(n)*x^(2*n) + ...
G_3(x)^3 = x^3 + 3*x^6 + 12*x^9 + 55*x^12 + ... + A001764(n)*x^(3*n) + ...
G_4(x)^4 = x^4 + 4*x^8 + 22*x^12 + 140*x^16 + ... + A002293(n)*x^(4*n) + ...
G_5(x)^5 = x^5 + 5*x^10 + 35*x^15 + 285*x^20 + ... + A002294(n)*x^(5*n) + ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,d]/(n-d+1),{d,Divisors[n]}],{n,20}] (* Gus Wiseman, Feb 15 2019 *)
  • PARI
    {a(n)=if(n<1,0,sumdiv(n,d,binomial(n,d)/(n-d+1)))}
    
  • PARI
    {a(n)=polcoeff(sum(m=1,n,serreverse(x/(1+x^m+x*O(x^n)))^m),n)}

Formula

a(n) = Sum_{d|n} C(n,d)/(n-d+1).
G.f.: Sum_{n>=1} Series_Reversion( x/(1+x^n) )^n.

A326246 Number of crossing, capturing set partitions of {1..n}.

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 37, 307, 2173, 14344, 92402, 596688
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2019

Keywords

Comments

A set partition is crossing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < y < t or z < x < t < y, and capturing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < t < y or z < x < y < t. Capturing is a weaker condition than nesting, so for example {{1,3,5},{2,4}} is capturing but not nesting.

Examples

			The a(5) = 3 set partitions:
  {{1,3,4},{2,5}}
  {{1,3,5},{2,4}}
  {{1,4},{2,3,5}}
		

Crossrefs

MM-numbers of crossing, capturing multiset partitions are A326259.
Crossing set partitions are A016098.
Capturing set partitions are A326243.
Crossing, nesting set partitions are A326248.
Crossing, non-capturing set partitions are A326245.
Non-crossing, capturing set partitions are A122880 (conjecture).

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				

A326249 Number of capturing set partitions of {1..n} that are not nesting.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 9, 55, 283, 1324, 5838, 24744
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2019

Keywords

Comments

Capturing is a weaker condition than nesting. A set partition is capturing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < t < y or z < x < y < t, and nesting if it has two blocks of the form {...x,y...}, {...z,t...} where x < z < t < y or z < x < y < t. For example, {{1,3,5},{2,4}} is capturing but not nesting, so is counted under a(5).

Examples

			The a(6) = 9 set partitions:
  {{1},{2,4,6},{3,5}}
  {{1,3,5},{2,4},{6}}
  {{1,3,6},{2,4},{5}}
  {{1,3,6},{2,5},{4}}
  {{1,4,6},{2},{3,5}}
  {{1,4,6},{2,5},{3}}
  {{1,3,5},{2,4,6}}
  {{1,2,4,6},{3,5}}
  {{1,3,5,6},{2,4}}
		

Crossrefs

MM-numbers of capturing, non-nesting multiset partitions are A326260.
Nesting set partitions are A016098.
Capturing set partitions are A326243.
Non-crossing, nesting set partitions are A122880 (conjectured).

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    capXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x_,{_,x_,y_,_},_,{_,z_,t_,_},_}/;x
    				

A324324 MM-numbers of crossing set partitions.

Original entry on oeis.org

2117, 3973, 4843, 5891, 6757, 7181, 7801, 10019, 10063, 11051, 11567, 13021, 13193, 13459, 14123, 14921, 17603, 18407, 18761, 18877, 19307, 19633, 20941, 21083, 21251, 21457, 22849, 23519, 23533, 24727, 26101, 27133, 27169, 27173, 27413, 29111, 30479, 31261
Offset: 1

Views

Author

Gus Wiseman, Feb 22 2019

Keywords

Comments

A multiset multisystem is a finite multiset of finite multisets. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part in the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.
A multiset multisystem is crossing if it contains two parts of the form {{...x...y...},{...z...t...}} with x < z < y < t or z < x < t < y.

Crossrefs

Cf. A000108 (non-crossing set partitions), A001055, A001222, A003963, A005117, A016098 (crossing set partitions), A054726, A056239, A112798, A302242, A302243, A302505, A302521 (MM-numbers of set partitions).

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;xTable[PrimePi[p],{k}]]]];
    setptnQ[bks_]:=UnsameQ@@Join@@bks&&!MemberQ[bks,{}];
    Select[Range[10000],And[croXQ[primeMS/@primeMS[#]],setptnQ[primeMS/@primeMS[#]]]&]

A326259 MM-numbers of crossing, capturing multiset partitions (with empty parts allowed).

Original entry on oeis.org

8903, 15167, 16717, 17806, 18647, 20329, 20453, 21797, 22489, 25607, 26709, 27649, 29551, 30334, 31373, 32741, 33434, 34691, 35177, 35612, 35821, 37091, 37133, 37294, 37969, 38243, 39493, 40658, 40906, 41449, 42011, 42949, 43594, 43817, 43873, 44515, 44861
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n.
A multiset partition is crossing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < y < t or z < x < t < y. It is capturing if it has two blocks of the form {...x...y...} and {...z...t...} where x < z and y > t or x > z and y < t. Capturing is a weaker condition than nesting, so for example {{1,3,5},{2,4}} is capturing but not nesting.

Examples

			The sequence of terms together with their multiset multisystems begins:
   8903: {{1,3},{2,2,4}}
  15167: {{1,3},{2,2,5}}
  16717: {{2,4},{1,3,3}}
  17806: {{},{1,3},{2,2,4}}
  18647: {{1,3},{2,2,6}}
  20329: {{1,3},{1,2,2,4}}
  20453: {{1,2,3},{1,2,4}}
  21797: {{1,1,3},{2,2,4}}
  22489: {{1,4},{2,2,5}}
  25607: {{1,3},{2,2,7}}
  26709: {{1},{1,3},{2,2,4}}
  27649: {{1,4},{2,2,6}}
  29551: {{1,3},{2,2,8}}
  30334: {{},{1,3},{2,2,5}}
  31373: {{2,5},{1,3,3}}
  32741: {{1,3},{2,2,2,4}}
  33434: {{},{2,4},{1,3,3}}
  34691: {{1,2,3},{2,2,4}}
  35177: {{1,3},{1,2,2,5}}
  35612: {{},{},{1,3},{2,2,4}}
		

Crossrefs

Crossing set partitions are A000108.
Capturing set partitions are A326243.
Crossing, capturing set partitions are A326246.
MM-numbers of crossing multiset partitions are A324170.
MM-numbers of nesting multiset partitions are A326256.
MM-numbers of capturing multiset partitions are A326255.
MM-numbers of unsortable multiset partitions are A326258.

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;xTable[PrimePi[p],{k}]]]];
    Select[Range[100000],capXQ[primeMS/@primeMS[#]]&&croXQ[primeMS/@primeMS[#]]&]
Previous Showing 21-30 of 54 results. Next